Alu DNA elements were long considered to be of no biological significance and thus have been only poorly defined. However, in the past Alu DNA elements with well-defined nucleotide sequences have been suspected to contribute to disease, but the role of Alu DNA element transcripts has rarely been investigated. For the first time, we determined in a real-time approach Alu DNA element transcription in buffy coat cells isolated from the blood of humans suffering from sporadic Creutzfeldt-Jakob disease (sCJD) and other neurodegenerative disorders. The reverse transcribed Alu transcripts were amplified and their cDNA sequences were aligned to genomic regions best fitted to database genomic Alu DNA element sequences deposited in the UCSC and NCBI data bases. Our cloned Alu RNA/cDNA sequences were widely distributed in the human genome and preferably belonged to the "young" Alu Y family. We also observed that some RNA/cDNA clones could be aligned to several chromosomes because of the same degree of identity and score to resident genomic Alu DNA elements. These elements, called paralogues, have purportedly been recently generated by retrotransposition. Along with cases of sCJD we also included cases of dementia and Alzheimer disease (AD). Each group revealed a divergent pattern of transcribed Alu elements. Chromosome 2 was the most preferred site in sCJD cases, besides chromosome 17; in AD cases chromosome 11 was overrepresented whereas chromosomes 2, 3 and 17 were preferred active Alu loci in controls. Chromosomes 2, 12 and 17 gave rise to Alu transcripts in dementia cases. The detection of putative Alu paralogues widely differed depending on the disease. A detailed data search revealed that some cloned Alu transcripts originated from RNA polymerase III transcription since the genomic sites of their Alu elements were found between genes. Other Alu DNA elements could be located close to or within coding regions of genes. In general, our observations suggest that identification and genomic localization of active Alu DNA elements could be further developed as a surrogate marker for differential gene expression in disease. A sufficient number of cases are necessary for statistical significance before Alu DNA elements can be considered useful to differentiate neurodegenerative diseases from controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933056PMC
http://dx.doi.org/10.4161/pri.4.2.11965DOI Listing

Publication Analysis

Top Keywords

alu dna
40
dna elements
28
alu
18
dna element
12
alu transcripts
12
dna
10
elements
10
sporadic creutzfeldt-jakob
8
creutzfeldt-jakob disease
8
disease scjd
8

Similar Publications

The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer.

View Article and Find Full Text PDF

Background: Global methylation refers to the total methylation in the DNA and can also be inferred from the Line 1 and Alu regions, as these repeats are very abundant in the genome. The main function of DNA methylation is to control gene expression and is associated with both normal and pathological mechanisms. DNA methylation depends on enzymes that generate the methyl radical (e.

View Article and Find Full Text PDF

Somatic mutations in individual cells lead to genomic mosaicism, contributing to the intricate regulatory landscape of genetic disorders and cancers. To evaluate and refine the detection of somatic mosaicism across different technologies with personalized donor-specific assembly (DSA), we obtained tissue from the dorsolateral prefrontal cortex (DLPFC) of a post-mortem neurotypical 31-year-old individual. We sequenced bulk DLPFC tissue using Oxford Nanopore Technologies (∼60X), NovaSeq (∼30X), and linked-read sequencing (∼28X).

View Article and Find Full Text PDF

Transcription by RNA polymerase II (Pol II) can be repressed by noncoding RNA, including the human RNA Alu. However, the mechanism by which endogenous RNAs repress transcription remains unclear. Here we present cryogenic-electron microscopy structures of Pol II bound to Alu RNA, which reveal that Alu RNA mimics how DNA and RNA bind to Pol II during transcription elongation.

View Article and Find Full Text PDF

In radiation tumor therapy, irradiation, on one hand, should cause cell death to the tumor. On the other hand, the surrounding non-tumor tissue should be maintained unaffected. Therefore, methods of local dose enhancements are highly interesting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!