Here, we would like to point out important milestones in the study of nuclear radial positioning and gene expression during differentiation processes. In addition, changes in the histone signature that significantly precede various differentiation pathways are reviewed. We address the regulatory functions of chromatin structure and histone epigenetic marks that give rise to gene expression patterns that are specific to distinct differentiation pathways. The functional relevance of nuclear architecture and epigenetic traits is preferentially discussed in the context of in vitro induced enterocytic differentiation and pluripotent or differentiated embryonic stem cells. We especially focus on the recapitulation of nuclear events that have been characterized for some genes and proto-oncogenes that are important for development and differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1247/csf.09021 | DOI Listing |
Bioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil.
Background/objectives: A striking feature of the karyotypes of stingless bees is the large amount of heterochromatin present in most species. Cytogenomic studies performed in some Meliponini species have suggested that evolutionary events related to the diversification and amplification of satellite DNA families in the heterochromatin may reflect the structuring of phylogenetic clades in this tribe. In this study, we performed a genomic analysis in to characterize different satDNA families in its genome.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France.
This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.
The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1 A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.
View Article and Find Full Text PDFSci Data
January 2025
BGI Research, Shenzhen, 518083, China.
The mammalian nervous system controls complex functions through highly specialized and interacting structures. Single-cell sequencing can provide information on cell-type-specific chromatin structure and regulatory elements, revealing differences in chromatin organization between different cell types and their potential roles of these differences in brain function. Here, we generated a chromatin accessibility dataset through single-cell ATAC-seq of 174,593 high-quality nuclei from 16 adult rat brain regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!