During childhood, the thyroid gland is one of the most sensitive organs to the carcinogenetic effects of ionizing radiation that may lead to papillary thyroid carcinoma (PTC) associated with RET/PTC oncogene rearrangement. Exposure to ionizing radiation induces a transient "oxidative burst" through radiolysis of water, which can cause DNA damage and mediates part of the radiation effects. H(2)O(2) is a potent DNA-damaging agent that induces DNA double-strand breaks, and consequently, chromosomal aberrations. Irradiation by 5 Gy X-ray increased extracellular H(2)O(2). Therefore, we investigated the implication of H(2)O(2) in the generation of RET/PTC1 rearrangement after X-ray exposure. We developed a highly specific and sensitive nested reverse transcription-PCR method. By using the human thyroid cell line HTori-3, previously found to produce RET/PTC1 after gamma-irradiation, we showed that H(2)O(2), generated during a 5 Gy X-ray irradiation, causes DNA double-strand breaks and contributes to RET/PTC1 formation. Pretreatment of cells with catalase, a scavenger of H(2)O(2), significantly decreased RET/PTC1 rearrangement formation. Finally, RET/PTC chromosomal rearrangement was detected in HTori-3.1 cells after exposure of cells to H(2)O(2) (25 micromol/L), at a dose that did not affect the cell viability. This study shows for the first time that H(2)O(2) is able to cause RET/PTC1 rearrangement in thyroid cells and consequently highlights that oxidative stress could be responsible for the occurrence of RET/PTC1 rearrangement found in thyroid lesions even in the absence of radiation exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-09-4336DOI Listing

Publication Analysis

Top Keywords

ret/ptc1 rearrangement
16
ionizing radiation
12
h2o2 ret/ptc1
8
chromosomal rearrangement
8
human thyroid
8
thyroid cells
8
dna double-strand
8
double-strand breaks
8
rearrangement thyroid
8
ret/ptc1
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!