Osedax is a recently discovered group of siboglinid annelids that consume bones on the seafloor and whose evolutionary origins have been linked with Cretaceous marine reptiles or to the post-Cretaceous rise of whales. Here we present whale bones from early Oligocene bathyal sediments exposed in Washington State, which show traces similar to those made by Osedax today. The geologic age of these trace fossils ( approximately 30 million years) coincides with the first major radiation of whales, consistent with the hypothesis of an evolutionary link between Osedax and its main food source, although older fossils should certainly be studied. Osedax has been destroying bones for most of the evolutionary history of whales and the possible significance of this "Osedax effect" in relation to the quality and quantity of their fossils is only now recognized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889357PMC
http://dx.doi.org/10.1073/pnas.1002014107DOI Listing

Publication Analysis

Top Keywords

early oligocene
8
whale bones
8
osedax
5
fossil traces
4
traces bone-eating
4
bone-eating worm
4
worm osedax
4
osedax early
4
oligocene whale
4
bones
4

Similar Publications

Furochrysa alisae gen et sp. nov. is described, and Stephenbrooksia multifurcata Willmann, 1993 and Danochrysa madseni Willmann, 1993 are re-described based on their holotypes and additional specimens from the early Eocene Fur Formation of Denmark.

View Article and Find Full Text PDF

As fully aquatic mammals, hearing is arguably the most important sensory component of cetaceans. Increasingly, researchers have been harnessing computed tomography (CT) to investigate the details of the inner ear as they can provide clues to the hearing abilities of whales. We use microCT scans of a broad sampling of the ear bones (periotics) of primarily toothed whales (Odontoceti) to investigate the inner ear bony labyrinth shape and reconstruct hearing sensitivities among these cetaceans, including several taxa about which little is currently known.

View Article and Find Full Text PDF

Marine phytoplankton community composition influences the production and export of biomass and inorganic minerals (such as calcite), contributing to core marine ecosystem processes that drive biogeochemical cycles and support marine life. Here we use morphological and assemblage data sets within a size-trait model to investigate the mix of cellular biogeochemical traits (size, biomass, calcite) present in high latitude calcareous nannoplankton communities through the Oligocene (ca. 34-26 Ma) to better understand the biogeochemical consequences of past climate variability on this major calcifying phytoplankton group.

View Article and Find Full Text PDF

The Almyropotamos tectonic window on southern Evia island in the NW Aegean Sea divides two high pressure-low temperature metamorphic units, representing distinct Hellenic thrust sheets. Ductile thinning along the major low-angle Evia Shear Zone has closely juxtaposed the lower (Basal Unit) marble-flysch sequence structurally below Styra marbles (Cycladic Blueschist Unit). The partially attenuated flysch comprises a matrix dominated by pelitic schist, with dispersed cm- to hm-scale blocks of marble, carbonate schist, quartzite, and metabasite.

View Article and Find Full Text PDF

Detailed descriptions of the maxillae of Siamopithecus eocaenus, discovered from the latest Eocene/earliest Oligocene lignite mine in the Krabi basin of Peninsular Thailand, are presented. They include the morphology of P-M, the palate, a partial orbital region, and the zygomatic root. The specimen exhibits distinctive dental features including a single-rooted P alveolus, a protocone on the P and P, and a true hypocone on the upper molars, indicating its derived anthropoid dentition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!