Purpose: Aurora kinase A (Aurora-A) is known to regulate genomic instability and tumorigenesis in multiple human cancers. The underlying mechanism, however, is not fully understood. We examined the molecular mechanism of Aurora-A regulation in human ovarian cancer.

Experimental Design: Retrovirus-mediated small hairpin RNA (shRNA) was used to silence the expression of Aurora-A in the ovarian cancer cell lines SKOV3, OVCA432, and OVCA433. Immunofluorescence, Western blotting, flow cytometry, cytogenetic analysis, and animal assay were used to test centrosome amplification, cell cycle alteration, apoptosis, DNA damage response, tumor growth, and genomic instability. Immunostaining of BRCA2 and Aurora-A was done in ovarian, pancreatic, breast, and colon cancer samples.

Results: Knockdown of Aurora-A reduced centrosome amplification, malformation of mitotic spindles, and chromosome aberration, leading to decreased tumor growth. Silencing Aurora-A attenuated cell cycle progression and enhanced apoptosis and DNA damage response by restoring p21, pRb, and BRCA2 expression. Aurora-A was inversely correlated with BRCA2 in high-grade ovarian serous carcinoma, breast cancer, and pancreatic cancer. In high-grade ovarian serous carcinoma, positive expression of BRCA2 predicted increased overall and disease-free survival, whereas positive expression of Aurora-A predicted poor overall and disease-free survival (P < 0.05). Moreover, an increased Aurora-A to BRCA2 expression ratio predicted poor overall survival (P = 0.047) compared with a decreased Aurora-A to BRCA2 expression ratio.

Conclusion: Aurora-A regulates genomic instability and tumorigenesis through cell cycle dysregulation and BRCA2 suppression. The negative correlation between Aurora-A and BRCA2 exists in multiple cancers, whereas the expression ratio of Aurora-A to BRCA2 predicts ovarian cancer patient outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930838PMC
http://dx.doi.org/10.1158/1078-0432.CCR-09-3171DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
aurora-a brca2
16
aurora-a
13
genomic instability
12
expression aurora-a
12
brca2 expression
12
brca2
10
aurora kinase
8
instability tumorigenesis
8
aurora-a ovarian
8

Similar Publications

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E.

View Article and Find Full Text PDF

Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.

View Article and Find Full Text PDF

Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).

View Article and Find Full Text PDF

CENP-E haploinsufficiency causes chromosome misalignment and spindle assembly checkpoint activation in the spermatogonia.

Andrology

December 2024

Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.

Background: The establishment of kinetochore-microtubule attachment is essential for error-free chromosome alignment and segregation during cell division. Defects in chromosome alignment result in chromosome instability, birth defects, and infertility. Kinesin-7 CENP-E mediates kinetochore-microtubule capture, chromosome alignment, and spindle assembly checkpoint in somatic cells, however, mechanisms of CENP-E in germ cells remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!