Background: Moth pheromone mating systems have been characterized at the molecular level, allowing evolutionary biologists to study how changes in protein sequence or gene expression affect pheromone phenotype, patterns of mating, and ultimately, the formation of barriers to gene exchange. Recent studies of Ostrinia pheromones have focused on the diversity of sex pheromone desaturases and their role in the specificity of pheromone production. Here we produce a Delta 11 desaturase genealogy within Ostrinia nubilalis. We ask what has been the history of this gene, and whether this history suggests that changes in Delta 11 desaturase have been involved in the divergence of the E and Z O. nubilalis pheromone strains.
Results: The Delta 11 desaturase gene genealogy does not differentiate O. nubilalis pheromone strains. However, we find two distinct clades, separated by 2.9% sequence divergence, that do not sort with pheromone strain, geographic origin, or emergence time. We demonstrate that these clades do not represent gene duplicates, but rather allelic variation at a single gene locus.
Conclusions: Analyses of patterns of variation at the Delta 11 desaturase gene in ECB suggest that this enzyme does not contribute to reproductive isolation between pheromone strains (E and Z). However, our genealogy reveals two deeply divergent allelic classes. Standing variation at loci that contribute to mate choice phenotypes may permit novel pheromone mating systems to arise in the presence of strong stabilizing selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877688 | PMC |
http://dx.doi.org/10.1186/1471-2148-10-112 | DOI Listing |
Diabetol Int
January 2025
Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan.
An elevated level of saturated fatty acids (SFAs) can cause non-alcoholic fatty liver disease (NAFLD). While n-3 polyunsaturated fatty acids (PUFAs) were shown to improve NAFLD, the effects of n-6 PUFAs in the liver have not been fully elucidated. We examined the association between NAFLD and n-6 PUFAs, particularly dihomo-γ-linolenic acid (DGLA), in patients with type 2 diabetes.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia.
: This study investigated the effects of maternal metabolic syndrome during pregnancy on hepatic fatty acid metabolism and betacellulin expression in rat offspring. A rat model of maternal metabolic syndrome was created with a high-fructose diet (15% fructose in drinking water for six months). : The females with metabolic syndrome were divided into the CON group, the HF group, which received fructose in drinking water, and the HF-DHA group, which received fructose in water and increased amounts of DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) in the diet (2.
View Article and Find Full Text PDFGenet Epidemiol
January 2025
Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short- to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase (FADS1), delta-6 desaturase (FADS2), and elongase (ELOVL2) on changes in RBC and plasma biomarkers.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2025
Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
The synthesis of n-3 and n-6 polyunsaturated acids (PUFAs) is associated with physiological functions in mammals, being catalyzed by Δ-5D and Δ-6D desaturases and elongases Elovl-2 and Elovl-5. In this context, we aimed to study the chief kinetic features of PUFA liver anabolism, looking upon (i) the time-dependency for the specific activity of Δ-6D, Δ-5D, Elovl2, Elovl2/5 and Elovl5, using n-3 and n-6 precursors between 0 and 240 min ex vivo in mouse liver.; and (ii) the specific activity-substrate (α-linolenic acid; ALA) concentration responses of Δ-6D in the absence and presence of linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), an enzyme regarded as the rate-limiting step in PUFA anabolism.
View Article and Find Full Text PDFArch Biochem Biophys
February 2025
Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy. Electronic address:
Lysine-specific demethylase 1 (LSD1) is a key regulator in cancer epigenetic, and its activity is reliant on flavin adenine dinucleotide (FAD) as a cofactor. In this study, we investigated the correlation between LSD1 and FAD synthase isoform 2 (FADS2) protein levels in pancreatic ductal adenocarcinoma (PDAC) cell lines. We first assessed LSD1 protein and mRNA levels in mutant p53-expressing PANC-1 and MiaPaCa2 cells and p53-null AsPc-1 cells, compared to human pancreatic ductal epithelial (HPDE) controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!