The thermodynamics of asymmetric liquid-liquid criticality is updated by incorporating pressure effects into the complete-scaling formulation earlier developed for incompressible liquid mixtures [C. A. Cerdeirina et al., Chem. Phys. Lett. 424, 414 (2006); J. T. Wang et al., Phys. Rev. E 77, 031127 (2008)]. Specifically, we show that pressure mixing enters into weakly compressible liquid mixtures as a consequence of the pressure dependence of the critical parameters. The theory is used to analyze experimental coexistence-curve data in the mole fraction-temperature, density-temperature, and partial density-temperature planes for a large number of binary liquid mixtures. It is shown how the asymmetry coefficients in the scaling fields are related to the difference in molecular volumes of the two liquid components. The work resolves the question of the so-called "best order parameter" discussed in the literature during the past decades.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3378626 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
Molecular dynamics simulations were conducted on mixtures of ionic liquids (ILs) and alcohols, specifically methanol, ethanol, and 1-propanol. Two different ILs, [Mmim][MeSO] and [Bmim][MeSO], were used with varying alcohol mole fractions to investigate the impact of alkyl chain length of cations, alcohol types, and alcohol concentrations on different structural and dynamic properties. Unique characteristics of the ILs were observed due to the varying polarity of solvents and the creation of diverse local environments surrounding the ILs.
View Article and Find Full Text PDFSci Data
January 2025
Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
This contribution presents a comprehensive extension of the QM9 dataset (originally at 133 K molecules) with the calculation of G4MP2 enthalpies for 9,841 molecules, featuring up to nine heavy atoms. We present QM9-LOHC, a (de)hydrogenation dataset of 10,373 reactions, including a minimum of 5.5% weight hydrogen storage capacity in line with the Department of Energy standards for Liquid Organic Hydrogen Carriers (LOHC).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany.
Visually appealing foods are often associated by consumers with subjective quality features, such as freshness, palatability, and shelf life. In the past, there have been repeated violations in which regulations on the use of pigments in food were ignored and/or unauthorized or toxic dyes (e.g.
View Article and Find Full Text PDFiScience
January 2025
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.
The storage and generation of electrical energy at the mm-scale is a core roadblock to realizing many untethered miniature systems, including industrial, environmental, and medically implanted sensors. We describe the potential to address the sensor energy requirement in a two-step process by first converting alpha radiation into light, which can then be translated into electrical power through a photovoltaic harvester circuit protected by a clear sealant. Different phosphorescent and scintillating materials were mixed with the alpha-emitter Th-227, and the conversion efficiency of europium-doped yttrium oxide was the highest at around 2%.
View Article and Find Full Text PDFProtein Sci
February 2025
Graduate School of Engineering, Osaka University, Osaka, Japan.
Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!