Enhanced product stability in the hammerhead ribozyme.

Biochemistry

Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.

Published: June 2010

The rate of dissociation of P1, the 5' product of hammerhead cleavage, is 100-300-fold slower in full-length hammerheads than in hammerheads that either lack or have disrupting mutations in the loop-loop tertiary interaction. The added stability requires the presence of residue 17 at the 3' terminus of P1 but not the 2', 3' terminal phosphate. Since residue 17 is buried within the catalytic core of the hammerhead in the X-ray structure, we propose that the enhanced P1 stability is a result of the cooperative folding of the hammerhead around this residue. However, since P1 is fully stabilized at >2.5 mM MgCl(2) while hammerhead activity continues to increase with an increase in MgCl(2) concentration, it is clear that the hammerhead structure in the transition state must differ from that of the product complex. The product stabilization assay is used to test our earlier proposal that different tertiary interactions modulate the cleavage rate by differentially stabilizing the core.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903062PMC
http://dx.doi.org/10.1021/bi902025mDOI Listing

Publication Analysis

Top Keywords

hammerhead
6
enhanced product
4
product stability
4
stability hammerhead
4
hammerhead ribozyme
4
ribozyme rate
4
rate dissociation
4
dissociation product
4
product hammerhead
4
hammerhead cleavage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!