Background: Recurrent pregnancy loss (RPL), defined as 3 or more consecutive miscarriages, is widely attributed either to repeated chromosomal instability in the conceptus or to uterine factors that are poorly defined. We tested the hypothesis that abnormal cyclic differentiation of endometrial stromal cells (ESCs) into specialized decidual cells predisposes to RPL, based on the observation that this process may not only be indispensable for placenta formation in pregnancy but also for embryo recognition and selection at time of implantation.

Methodology/principal Findings: Analysis of mid-secretory endometrial biopsies demonstrated that RPL is associated with decreased expression of the decidual marker prolactin (PRL) but increased levels of prokineticin-1 (PROK1), a cytokine that promotes implantation. These in vivo findings were entirely recapitulated when ESCs were purified from patients with and without a history of RPL and decidualized in culture. In addition to attenuated PRL production and prolonged and enhanced PROK1 expression, RPL was further associated with a complete dysregulation of both markers upon treatment of ESC cultures with human chorionic gonadotropin, a glycoprotein hormone abundantly expressed by the implanting embryo. We postulated that impaired embryo recognition and selection would clinically be associated with increased fecundity, defined by short time-to-pregnancy (TTP) intervals. Woman-based analysis of the mean and mode TTP in a cohort of 560 RPL patients showed that 40% can be considered "superfertile", defined by a mean TTP of 3 months or less.

Conclusions: Impaired cyclic decidualization of the endometrium facilitates implantation yet predisposes to subsequent pregnancy failure by disabling natural embryo selection and by disrupting the maternal responses to embryonic signals. These findings suggest a novel pathological pathway that unifies maternal and embryonic causes of RPL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858209PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010287PLOS

Publication Analysis

Top Keywords

decidualization endometrium
8
recurrent pregnancy
8
pregnancy loss
8
embryo recognition
8
recognition selection
8
rpl associated
8
rpl
7
natural selection
4
selection human
4
human embryos
4

Similar Publications

Signaling via retinoic acid receptors mediates decidual angiogenesis in mice and human stromal cell decidualization.

FASEB J

January 2025

Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.

At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period.

View Article and Find Full Text PDF

Uterine infections reduce ruminant reproductive efficiency. Reproductive dysfunction caused by infusion of Gram-negative bacteria is characterized by the failure of embryo implantation and reduced conception rates. Lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, is highly abortogenic.

View Article and Find Full Text PDF

The placenta is a unique organ with various immunological and endocrinological roles that modulate maternal and fetal physiology to promote maternal-fetal tolerance, pregnancy maintenance, and parturition at term. During pregnancy, the hormone prolactin (PRL) is constitutively secreted by the placenta and is necessary for implantation, progesterone support, fetal development, and overall immune modulation. While PRL is essential for pregnancy, studies suggest that elevated levels of serum PRL (hyperprolactinemia) are associated with adverse pregnancy outcomes, including miscarriage, preterm birth, and preeclampsia.

View Article and Find Full Text PDF

Genome-wide analysis reveals porcine LIFR regulated by DNA methylation promotes the implantation process via the STAT3 signaling.

Int J Biol Macromol

January 2025

Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Embryo-uterine interaction during embryo implantation depends on the coordinated expression of numerous genes in the receptive endometrium. While DNA methylation is known to play a significant role in controlling gene expression, specific molecular mechanisms underlying this regulatory event remain elusive in early porcine pregnancy. Here, we investigated the genome-wide DNA methylation landscape in the Yorkshire and Meishan pig's endometrium.

View Article and Find Full Text PDF

Single-cell atlas of the pregnant equine endometrium before and after implantation.

Biol Reprod

January 2025

Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853.

Embryo implantation in the mare occurs just over one month after fertilization, coinciding with the production of chorionic gonadotropin. The factors that regulate this late implantation in the mare, and whether they are unique to horses or shared with more invasive embryo implantation in other species, remain poorly understood. This study aimed to determine and compare the transcriptome and subpopulations of endometrial cells before and after embryo implantation in the horse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!