The intramembrane aspartyl protease gamma-secretase plays a fundamental role in several signaling pathways involved in cellular differentiation and has been linked with a variety of human diseases, including Alzheimer's disease. Here, we describe a transgenic Drosophila model for in vivo-reconstituted gamma-secretase, based on expression of epitope-tagged versions of the four core gamma-secretase components, Presenilin, Nicastrin, Aph-1, and Pen-2. In agreement with previous cell culture and yeast studies, coexpression of these four components promotes the efficient assembly of mature, proteolytically active gamma-secretase. We demonstrate that in vivo-reconstituted gamma-secretase has biochemical properties and a subcellular distribution resembling those of endogenous gamma-secretase. However, analysis of the cleavage of alternative substrates in transgenic-fly assays revealed unexpected functional differences in the activity of reconstituted gamma-secretase toward different substrates, including markedly reduced cleavage of some APP family members compared to cleavage of the Notch receptor. These findings indicate that in vivo under physiological conditions, additional factors differentially modulate the activity of gamma-secretase toward its substrates. Thus, our approach for the first time demonstrates the overall functionality of reconstituted gamma-secretase in a multicellular organism and the requirement for substrate-specific factors for efficient in vivo cleavage of certain substrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897587 | PMC |
http://dx.doi.org/10.1128/MCB.00030-10 | DOI Listing |
Toxicol Rep
June 2025
Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India.
Alzheimer's Disease (AD) is one of the leading neurodegenerative diseases that affect the human population. Several hypotheses are in the pipeline to establish the commencement of this disease; however, the amyloid hypothesis is one of the most widely accepted ones. Amyloid plaques are rich in Amyloid Beta (Aβ) proteins, which are found in the brains of Alzheimer's patients.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Genetics, Yale School of Medicine, USA.
Retromer mediates retrograde transport of protein cargos from endosomes to the trans-Golgi network (TGN). γ-secretase is a protease that cleaves the transmembrane domain of its target proteins. Although retromer can form a stable complex with γ-secretase, the functional consequences of this interaction are not known.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia.
Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).
View Article and Find Full Text PDFGenes (Basel)
January 2025
Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA.
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea.
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!