MthK is a Ca(2+)-gated K(+) channel whose activity is inhibited by cytoplasmic H(+). To determine possible mechanisms underlying the channel's proton sensitivity and the relation between H(+) inhibition and Ca(2+)-dependent gating, we recorded current through MthK channels incorporated into planar lipid bilayers. Each bilayer recording was obtained at up to six different [Ca(2+)] (ranging from nominally 0 to 30 mM) at a given [H(+)], in which the solutions bathing the cytoplasmic side of the channels were changed via a perfusion system to ensure complete solution exchanges. We observed a steep relation between [Ca(2+)] and open probability (Po), with a mean Hill coefficient (n(H)) of 9.9 +/- 0.9. Neither the maximal Po (0.93 +/- 0.005) nor n(H) changed significantly as a function of [H(+)] over pH ranging from 6.5 to 9.0. In addition, MthK channel activation in the nominal absence of Ca(2+) was not H(+) sensitive over pH ranging from 7.3 to 9.0. However, increasing [H(+)] raised the EC(50) for Ca(2+) activation by approximately 4.7-fold per tenfold increase in [H(+)], displaying a linear relation between log(EC(50)) and log([H(+)]) (i.e., pH) over pH ranging from 6.5 to 9.0. Collectively, these results suggest that H(+) binding does not directly modulate either the channel's closed-open equilibrium or the allosteric coupling between Ca(2+) binding and channel opening. We can account for the Ca(2+) activation and proton sensitivity of MthK gating quantitatively by assuming that Ca(2+) allosterically activates MthK, whereas H(+) opposes activation by destabilizing the binding of Ca(2+).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860591 | PMC |
http://dx.doi.org/10.1085/jgp.200910387 | DOI Listing |
Funct Integr Genomics
January 2025
National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India.
Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007. Electronic address:
The astroglial glutamate transporter in the hippocampus and anterior cingulate cortex (ACC) is critically involved in chronic pain-induced cognitive and psychiatric abnormalities. We have previously reported that LDN-212320, a glutamate transporter-1 (GLT-1) activator, attenuates complete Freund's adjuvant (CFA)-induced acute and chronic nociceptive pain. However, the cellular and molecular mechanisms underlying GLT-1 modulation in the hippocampus and ACC during chronic pain-induced cognitive deficit-like and anxiety-like behaviors remain unknown.
View Article and Find Full Text PDFSci Total Environ
January 2025
Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, PR China.
Metal-Organic Frameworks (MOFs) have shown great promise in environmental protection, owing to their exceptional properties including ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. However, emerging evidence from experimental studies indicates that MOFs have side effects on human health due to metal ions doping, resulting in excessive reactive oxygen species (ROS) production, pro-inflammatory responses, and liver fibrosis. In this study, we investigated the impact of MOF-199 on human bronchial epithelial (HBE) cells by using transcriptome sequencing analysis.
View Article and Find Full Text PDFRedox Biol
January 2025
Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:
Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
January 2025
Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Positive inotropic responses upon administration of milrinone, an inhibitor of the phosphodiesterase enzyme (PDE), involve a well-pronounced positive chronotropic effect. Here we tested whether milrinone evokes this chronotropic response solely by PDE inhibition or by a concerted action that involve additional pharmacological targets. Milrinone stimulated increases in heart rate were studied in right atrial preparations of guinea pig in the presence or absence of inhibitors of putative ancillary molecular pathways or ion channels: i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!