Mcm2-7 is recruited to eukaryotic origins of DNA replication by origin recognition complex, Cdc6 and Cdt1 thereby licensing the origins. Cdc6 is essential for origin licensing during DNA replication and is readily destabilized from chromatin after Mcm2-7 loading. Here, we show that after origin licensing, deregulation of Cdc6 suppresses DNA replication in Xenopus egg extracts without the involvement of ATM/ATR-dependent checkpoint pathways. DNA replication is arrested specifically after chromatin binding of Cdc7, but before Cdk2-dependent pathways and deregulating Cdc6 after this step does not impair activation of origin firing or elongation. Detailed analyses revealed that Cdc6 deregulation leads to strong suppression of Cdc7-mediated hyperphosphorylation of Mcm4 and subsequent chromatin loading of Cdc45, Sld5 and DNA polymerase α. Mcm2 phosphorylation is also repressed although to a lesser extent. Remarkably, Cdc6 itself does not directly inhibit Cdc7 kinase activity towards Mcm2-4-6-7 in purified systems, rather modulates Mcm2-7 phosphorylation on chromatin context. Taken together, we propose that Cdc6 on chromatin acts as a modulator of Cdc7-mediated phosphorylation of Mcm2-7, and thus destabilization of Cdc6 from chromatin after licensing is a key event ensuring proper transition to the initiation of DNA replication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938227 | PMC |
http://dx.doi.org/10.1093/nar/gkq262 | DOI Listing |
Sci Rep
December 2024
Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
Breast cancer is a leading cause of cancer-related deaths among women globally. It is imperative to explore novel biomarkers to predict breast cancer treatment response as well as progression. Here, we collected six breast cancer samples and paired normal tissues for high-throughput sequencing.
View Article and Find Full Text PDFJ Pediatr Urol
December 2024
Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Surgery, Muğla, Turkey.
Introduction: Cryptorchidism impairs sperm development and increases the risk of infertility and testicular cancer. Estrogen signalling is critical for proper descent of the testicles, and hormonal imbalances play a role in cryptorchidism. CYP19, also known as aromatase, encodes an enzyme that converts testosterone, a male sex hormone, into estradiol, the main form of estrogen.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.
Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.
View Article and Find Full Text PDFJ Biol Chem
December 2024
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China. Electronic address:
Mirror-image nucleosides, as potential antiviral drugs, can inhibit virus DNA polymerase to prevent virus replication. Conversely, they may be inserted into the DNA strands during DNA replication or transcription processes, leading to mutations that affect genome stability. Accumulation of significant mutation damage in cells may result in cell aging, apoptosis, and even uncontrolled cell division.
View Article and Find Full Text PDFVirol J
December 2024
Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
PEDV is a highly contagious enteric pathogen that can cause severe diarrhea and death in neonatal pigs. Despite extensive research, the molecular mechanisms of host's response to PEDV infection remain unclear. In this study, differentially expressed genes (DEGs), time-specific coexpression modules, and key regulatory genes associated with PEDV infection were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!