Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions.

Sci Total Environ

Laboratory for Earth Surface Processes (LASP), College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.

Published: July 2010

Upon release of engineered nanoparticles (NPs) into the subsurface environment, their fate and transport and hence their potential environmental and public health impacts will largely depend on how stable these NPs are as suspended particles in the natural environment. In this study, we systematically examine the effect of humic acid (HA) on surface charge status and aggregation potential of magnetite (Fe(3)O(4)) NPs, selected as a model for metal oxide NPs, over a wide range of solution pH and ionic strength. Through zeta potential (ZP) measurements, we found that HA can adsorb to magnetite particles hence modifying their surface charge status. At low loadings, the presence of HA can induce a shift in the point zero of charge of due to partial neutralization of the positive charges on magnetite NPs. At high loadings, however, HA is capable of completely cover magnetite particles giving rise to a suspension ZP profile similar to its own (observed in presence of 20 mg L(-)(1) HA). These impacts on surface charge correspond well with the observed aggregation behaviors in the absence and presence of HA. From the dynamic light scattering (DLS) measurements, fast aggregation, which is independent of solution chemistry, took place when the pH is close to the point zero charge (PZC) and the ionic strength is above the critical coagulation concentration (CCC). At high ionic strength, a small dose (2 mg L(-)(1)) of HA stabilized the NPs' suspension significantly. This stabilization effect is substantially enhanced with increasing HA concentration. The calculated DLVO (Derjaguin-Landau-Verwey-Overbeek) interaction energy profiles, using experimentally determined values of Hamaker constant, adequately support the experimental observations. The DLVO analysis further reveals the possible presence of secondary energy minima and the possibility of deaggregation of magnetite agglomerates. The complexation of HA-NPs and the HA effects on NPs aggregations were confirmed by atomic force microscope (AFM) observations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2010.03.033DOI Listing

Publication Analysis

Top Keywords

ionic strength
16
surface charge
12
charge status
8
magnetite particles
8
point charge
8
magnetite
6
nps
6
charge
5
dissolved organic
4
organic matter
4

Similar Publications

Migration of vanadium oxide nanoparticles in saturated porous media.

J Hazard Mater

January 2025

MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.

Vanadium oxides nanoparticles (VO-NPs) as emerging functional materials are widely applied in high-technology industries. However, their environmental behaviors remain largely known. In this study, the migration of three common VO-NPs (VO VO, and VO) in saturated porous media has been investigated.

View Article and Find Full Text PDF

Effect of ultrasound-assisted phosphates treatment on solubilization and stable dispersion of rabbit Myofibrillar proteins at low ionic strength.

Food Chem

January 2025

College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China. Electronic address:

The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.

View Article and Find Full Text PDF

Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!