Pentapeptide diacidic sequence LELTE, derived from the mycobacterial heat shock protein hsp65, has been recently identified as a "danger" signal of the immune system effective via specific binding to the universal leukocyte triggering receptor CD69. This sequence is not active per se, only after its presentation within the multivalent environment of its parent protein, or after artificial dimerization using a standard bifunctional reagents. Here we describe an entirely new way of presenting of this peptide based on its attachment to a cyclopeptide RAFT scaffold (K-K-K-P-G)(2) through the epsilon-amino group of lysine residues, alone or in combination with the carbohydrate epitope alphaGalNAc. The ability of such RAFT scaffolds to precipitate the target CD69 receptor or to activate CD69-positive cells is enhanced in compounds 2 and 4 possessing combined peptide/carbohydrate expression. Compounds 2 and 4 are highly efficient activators of natural killer lymphocytes, but they are completely inactive from the point of view of activation-induced apoptosis of lymphocytes by the target cells. These unique properties make the combined peptide/carbohydrate RAFTs highly suitable for future evaluation in animal tumor therapies in vivo and predict them to be readily available and efficient immunoactivators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja101296t | DOI Listing |
J Am Chem Soc
May 2010
Département de Chimie Moléculaire, UMR CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, BP53, 38041 Grenoble Cedex 9, France.
Pentapeptide diacidic sequence LELTE, derived from the mycobacterial heat shock protein hsp65, has been recently identified as a "danger" signal of the immune system effective via specific binding to the universal leukocyte triggering receptor CD69. This sequence is not active per se, only after its presentation within the multivalent environment of its parent protein, or after artificial dimerization using a standard bifunctional reagents. Here we describe an entirely new way of presenting of this peptide based on its attachment to a cyclopeptide RAFT scaffold (K-K-K-P-G)(2) through the epsilon-amino group of lysine residues, alone or in combination with the carbohydrate epitope alphaGalNAc.
View Article and Find Full Text PDFImmunol Res
June 2008
Conceptual Immunology Group, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
A workshop group developed the concept of a "polyspecific" TCR/BCR in the framework of today's consensus model. They argue that the individual TCR/BCR combining site is composed of a packet of specificities randomly plucked from the repertoire, hence it is "polyspecific." This essay analyzes the conclusions of the workshop and suggests an alternative.
View Article and Find Full Text PDFBiophys J
February 2008
National Institute of Immunology, New Delhi, India.
Molecular mimicry is a recurrent theme in host defense processes. The correlation of functional mimicry with the structural features of the antibody paratope has been investigated, addressing the consequences of mimicry in host immune mechanisms. Two anti-mannopyranoside antibodies, 1H7 and 2D10, representing the possible extremes of the recognition spectrum with regard to peptide-carbohydrate mimicry were examined.
View Article and Find Full Text PDFStructural and physiological facets of carbohydrate-peptide mimicry were addressed by analyzing the Ab response to alpha-d-mannopyranoside. mAbs against alpha-d-mannopyranoside were generated and screened with the carbohydrate-mimicking 12 mer (DVFYPYPYASGS) peptide. Three mAbs, 2D10, 1H11, and 1H7, which were subjected to detailed analysis, exhibit diverse V gene usage, indicating their independent germline origins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2003
Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
The structure of a complex between the Fab fragment of the antibody (SYA/J6) specific for the cell surface O-antigen polysaccharide of the pathogen Shigella flexneri Y and an octapeptide (Met-Asp-Trp-Asn-Met-His-Ala-Ala), a functional mimic of the O-antigen, has been determined at 1.8-A resolution. Comparison of the structure with that of the complex with the pentasaccharide antigen [-->2)-alpha-L-Rha-(1-->2)-alpha-L-Rha-(1-->3)-alpha-L-Rha-(1-->3)-beta-D-GlcNAc-(1-->2)-alpha-L-Rha-(1-->] reveals the molecular recognition process by which a peptide mimics a carbohydrate in binding to an antibody.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!