Cell-cell interactions are of crucial importance for the formation of tissues, homeostasis and regeneration processes as well as reactions on foreign bodies including implants. So far, however, the importance of heterotypic cell-cell interactions in the in vitro evaluation of implant surfaces has been largely neglected. This work aims to develop an in vitro methodology that enables the in-depth investigation of heterotypic cell-cell interactions in a mixed co-culture system, and to validate it with a primary adult human bone-derived osteoblast cells (HBCs) - abdominal fibroblasts (HAFs) system. The methodology proposed combines a simple live labelling step, semiautomated fluorescence image acquisition and analysis to characterize the interactions between different cell types (cell population dynamics) in co-culture in terms of cell proliferation and cell spatial distribution of each cell type. In this co-culture system, direct cell-cell contacts between the two cell types were permitted while the determination of cell-type specific responses could still be elucidated. We could show that HAF proliferation was reduced in a way negatively correlated with the seeding HBC/HAF ratio, i.e., a high proportion of HBC in the co-culture had an inhibitory effect on HAF proliferation. In all cultures segregation was found after 4 and 7 days of co-culture. HBCs were segregated at low ratios while HAFs were segregated at high ratios. Cell-cell distances depended on the total cell number in the co-culture but the dependence was different for each cell type.

Download full-text PDF

Source
http://dx.doi.org/10.22203/ecm.v019a17DOI Listing

Publication Analysis

Top Keywords

cell-cell interactions
16
heterotypic cell-cell
12
co-culture system
8
cell
8
cell types
8
cell type
8
haf proliferation
8
co-culture
7
cell-cell
6
interactions
5

Similar Publications

The tertiary lymphoid structure (TLS) is recognized as a potential prognosis factor for breast cancer and is strongly associated with response to immunotherapy. Inducing TLS neogenesis can enhance the immunogenicity of tumors and improve the efficacy of immunotherapy. However, our understanding of TLS associated region at the single-cell level remains limited.

View Article and Find Full Text PDF

Unraveling the tumor microenvironment of esophageal squamous cell carcinoma through single-cell sequencing: A comprehensive review.

Biochim Biophys Acta Rev Cancer

January 2025

State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China. Electronic address:

Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous and aggressive malignancy. The progression, invasiveness, and metastatic potential of ESCC are shaped by a multitude of cells within the tumor microenvironment (TME), including tumor cells, immune cells, endothelial cells, as well as fibroblasts and other cell types. Recent advancements in single-cell sequencing technologies have significantly enhanced our comprehension of the diverse landscape of ESCC.

View Article and Find Full Text PDF

Establishing a Three-Dimensional Coculture Module of Epithelial Cells Using Nanofibrous Membranes.

J Vis Exp

December 2024

Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;

Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.

View Article and Find Full Text PDF

African-American women have a maternal mortality rate approximately three times higher than European-American women. This is partially due to hypertensive disorders of pregnancy, including preeclampsia. Fetal high-risk genotype increases preeclampsia risk, although mechanisms remain elusive.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!