Gadolinium (Gd) and its complexes are utilized widely in industrial and clinical diagnoses. As a rare earth metal ion, free gadolinium (Gd(3+)) in the human body poses neurotoxic risks during its in vivo release and retention. In the central nervous system, astrocytes play a pivotal role in processing toxic metal ions. The present study evaluates the effects of Gd on cellular calcium homeostasis, a common mechanism that causes cell death, and on unfolded protein responses (UPRs), a mechanism for cell survival in response to toxic stimuli in mammalian cells. The experimental results indicate that the influx of extracellular Ca(2+) increases greatly after the exposure of astrocytes to Gd; however, no cell deaths were observed. Further evidence suggests the up-regulated expression of the endoplasmic reticulum (ER)-resident chaperone protein GRP78 by ER stress-mediated signal transductions, specifically the activation of ATF6, eIF2a, and IRE1. These results suggest that Gd promotes Ca(2+) influx, thus triggering UPRs, which can be closely associated to the resistance of astrocytes to Gd-induced cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10565-010-9166-2 | DOI Listing |
Acta Cir Bras
January 2025
Universidade Federal de Mato Grosso do Sul - Postgraduate Program in Health and Development in the Midwest Region - Campo Grande (MS) - Brazil.
Purpose: To evaluate the molecular evolution of endoplasmic reticulum (ER) stress during colorectal cancer carcinogenesis.
Methods: Fifty-six hairless mice were divided into two groups: control (no intervention); and carcinogenesis (treated with two doses of azoxymethane at 10 mg/kg during the third and the fourth week and dextran sodium sulfate at 2.5% for seven days in the second, fifth, and eighth week).
Sci Adv
January 2025
Department of Chemistry, Brown University, Providence, RI, USA.
Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Research and Development Center, Beijing Genetech Pharmaceutical Co., Ltd., Beijing 102200, People's Republic of China.
Understanding the folding mechanisms of multi-domain proteins is crucial for gaining insights into protein folding dynamics. The BphC enzyme, a key player in the degradation of polychlorinated biphenyls consists of eight identical subunits, each containing two domains, with each domain comprising two "βαβββ" motifs. In this study, we employed high-temperature molecular dynamics simulations to systematically analyze the unfolding dynamics of a BphC subunit.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
Estimating rare event kinetics from molecular dynamics simulations is a non-trivial task despite the great advances in enhanced sampling methods. Weighted Ensemble (WE) simulation, a special class of enhanced sampling techniques, offers a way to directly calculate kinetic rate constants from biased trajectories without the need to modify the underlying energy landscape using bias potentials. Conventional WE algorithms use different binning schemes to partition the collective variable (CV) space separating the two metastable states of interest.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Physical Therapy, University of Florida Health Cancer Center, Gainesville, Florida, USA.
Background: Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!