Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911537 | PMC |
http://dx.doi.org/10.1007/s00216-010-3721-9 | DOI Listing |
Mol Biol Cell
January 2025
Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.
The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of mutants, which can suppress the colony-formation defects and lysis phenotype of mutant cells, are isolated and characterized. One of the suppressor mutants, -, shows defects in the cytokinetic contractile ring constriction, septation, and daughter-cell separation, similar to mutant.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey.
This study aimed to investigate the impact of early childhood chronic stress on the development of the brain extracellular matrix (ECM) and how alterations in the ECM following early-life adversity (ELA) affect auditory learning and cognitive flexibility. ELA was induced through a combination of maternal separation and neonatal isolation in male Sprague-Dawley rats, and the success of the ELA model was assessed behaviorally and biochemically. A cortex-dependent go/no-go task with two phases was used to determine the impact of ELA on auditory learning and cognitive flexibility.
View Article and Find Full Text PDFDiabetes Metab Res Rev
January 2025
Division of Research, Kaiser Permanente Northern California, Pleasanton, California, USA.
Aims: Gestational diabetes mellitus (GDM) poses a significant risk for developing type 2 diabetes mellitus (T2D) and exhibits heterogeneity. However, understanding the link between different types of post-GDM individuals without diabetes and their progression to T2D is crucial to advance personalised medicine approaches.
Materials And Methods: We employed a discovery-based unsupervised machine learning clustering method to generate clustering models for analysing metabolomics, clinical, and biochemical datasets.
Anal Chem
January 2025
Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.
The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.
View Article and Find Full Text PDFJ Clin Apher
February 2025
University of Kansas Medical Center, Division of Hematologic Malignancies and Cellular Therapeutics, Kansas City, Kansas, USA.
Apheresis is essential to conducting hematopoietic cell transplantation and genetically engineered cellular therapy procedures. Many patients and donors require central venous catheter (CVC) access for apheresis due to lack of adequate peripheral venous access. CVC placement has risks of associated complications and requires additional institutional resources and expertise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!