In this work the shift in fluorescence emission spectra of acrylodan, a polar sensitive fluorophore, has been used to characterize the polarity immediately surrounding cytoplasmic (cMDH) and mitochondrial malate dehydrogenase (mMDH) enzyme immobilized within three-dimensional macroporous chitosan scaffolds. The scaffolds were fabricated from solutions of fluorescently tagged enzymes mixed with deacetylated and hydrophobically modified chitosan polymer. Each solution was frozen and then freeze-dried through the process of thermally induced phase separation (TIPS). The blue shift in acrylodan's emission maxima (lambda(max)) revealed a polar shift in the chemical microenvironment surrounding the enzymes when immobilized in a modified as opposed to unmodified chitosan scaffold. These results suggest that the method of hydrophobic modification of native chitosan polymer can be used to control the amphiphilic nature of the chemical microenvironment immediately surrounding the enzyme after it has been immobilized.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b921409gDOI Listing

Publication Analysis

Top Keywords

enzyme immobilized
8
chitosan polymer
8
chemical microenvironment
8
microenvironment surrounding
8
fluorescence analysis
4
analysis chemical
4
chemical microenvironments
4
microenvironments impact
4
impact performance
4
immobilized
4

Similar Publications

Cellulosic nanomaterials have significantly promoted the development of sensing devices, drug delivery, and bioreactor processes. Their synthetic flexibility makes them a prominent choice for immobilizing biomolecules or cells. In this work, we developed a practical and user-friendly approach to accessing cellulose nanoparticles (CNPs).

View Article and Find Full Text PDF

Enzymes are attractive as catalysts due to their specificity and biocompatibility; however, their use in industrial and biomedical applications is limited by stability. Here, we present a facile approach for enzyme immobilization within "all-enzyme" hydrogels by forming photochemical covalent cross-links between the enzyme glucose oxidase. We demonstrate that the mechanical properties of the enzyme hydrogel can be tuned with enzyme concentration and the data suggests that the dimeric nature of glucose oxidase results in unusual gel formation behavior which suggests a degree of forced induced dimer dissociation and unfolding.

View Article and Find Full Text PDF

Diabetes is a critical worldwide health problem. Numerous studies have focused on producing recombinant human insulin to address this issue. In this research, the process factors of production of recombinant His-tagged proinsulin in E.

View Article and Find Full Text PDF

The application of chitin materials in enzymatic catalysis: A review.

Carbohydr Polym

March 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

Enzymatic catalysis offers notable advantages, including exceptional catalytic efficiency, selectivity, and the ability to operate under mild conditions. However, its widespread application is hindered by the high costs associated with enzymes and cofactors. Materials-mediated immobilization technology has proven effective in the recycling of enzymes and cofactors.

View Article and Find Full Text PDF

This study explores the immobilization of lipase from Candida rugosa (CRL) on hemp tea waste to catalyze the esterification of oleic acid with primary aliphatic C2-C12 alcohols. in a solvent-free system. The immobilization method employed was adsorption, chosen for its simplicity, low cost, and ability to preserve enzyme activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!