Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peridinin is a light-harvesting carotenoid found in oceanic photosynthetic organisms. It possesses a unique gamma-ylidenbutenolide function and engages in energy transfer to chlorophyll a with very high (>90%) efficiency. In order to examine the relationship between the unique structure of peridinin and its facility in carrying out energy transfer, we have synthesized two different ylidenbutenolide-modified derivatives of peridinin. In this communication, the details of the syntheses are described as are the stereochemical and spectral characteristics of the derivatives; the novel ylidenbutenolide functional group stabilizes the molecule and maintains the conjugated pi-electron system in an all-trans configuration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c002006k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!