Bone and soft tissue sarcomas are an infrequent and heterogeneous group of mesenchymal tumors including more than a hundred different entities attending to histologic patterns. Research into the molecular aspects of sarcomas has increased greatly in the last few years. This enormous amount of knowledge has allowed, for instance, to refine the classification of sarcomas, improve the diagnosis, and increase the number of therapeutical targets available, most of them under preclinical evaluation. However, other important key issues, such as sarcomagenesis and the cell of origin of sarcomas, remain unresolved. From a molecular point of view, these neoplasias are grouped into 2 main types: (a) sarcomas showing relatively simple karyotypes and translocations, which originate gene fusions (eg, EWS-FLI1 in Ewing sarcoma) or point mutations (eg, c-kit in the gastrointestinal tumors) and (b) sarcomas showing unspecific gene alterations, very complex karyotypes, and no translocations. The discovery of the early mechanisms involved in the genesis of sarcomas, the more relevant signaling pathways, and the development of genetically engineered mouse models could also provide a new individualized therapeutic strategy against these tumors. This review describes the clinical application of some of the molecular alterations found in sarcomas, some advances in the field of sarcomagenesis, and the development of animal models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PAP.0b013e3181d98cbf | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!