Control of membrane curvature is required in many important cellular processes, including endocytosis and vesicular trafficking. Endophilin is a bin/amphiphysin/rvs (BAR) domain protein that induces vesicle formation by promotion of membrane curvature through membrane binding as a dimer. Using site-directed spin labeling and EPR spectroscopy, we show that the overall BAR domain structure of the rat endophilin A1 dimer determined crystallographically is maintained under predominantly vesiculating conditions. Spin-labeled side chains on the concave surface of the BAR domain do not penetrate into the acyl chain interior, indicating that the BAR domain interacts only peripherally with the surface of a curved bilayer. Using a combination of EPR data and computational refinement, we determined the structure of residues 63-86, a region that is disordered in the crystal structure of rat endophilin A1. Upon membrane binding, residues 63-75 in each subunit of the endophilin dimer form a slightly tilted, amphipathic alpha-helix that directly interacts with the membrane. In their predominant conformation, these helices are located orthogonal to the long axis of the BAR domain. In this conformation, the amphipathic helices are positioned to act as molecular wedges that induce membrane curvature along the concave surface of the BAR domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888429 | PMC |
http://dx.doi.org/10.1074/jbc.M110.127811 | DOI Listing |
Eur J Cancer Prev
January 2025
Department of Thoracic Surgery.
Leading societies have established guidelines that vary significantly regarding recommendations for the surgical management of pulmonary carcinoids (PC). We aimed to assess current guidelines and recommendations for PC surgical management, benchmark their methodological quality, and identify factors that may influence their effectiveness in guiding surgical practice. Literature was sought to identify relevant guidelines for the management of PC.
View Article and Find Full Text PDFJBMR Plus
February 2025
Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States.
Human genetic studies have nominated cadherin-like and PC-esterase domain-containing 1 () as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of in zebrafish, an emerging model for bone and mineral research.
View Article and Find Full Text PDFPediatr Infect Dis J
November 2024
National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD.
Background: Following maternal COVID-19 vaccination, the persistence of antibodies in sera and breast milk for mothers and infants is not well characterized. We sought to describe the persistence of antibodies through 2 months after delivery in maternal and infant serum and breast milk following maternal COVID-19 mRNA vaccination and to examine differences by receipt of booster dose during pregnancy or postpartum.
Methods: This is a prospective cohort study with enrollment from July 2021 to January 2022 at 9 US academic sites.
Immunity
January 2025
Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA. Electronic address:
Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response.
View Article and Find Full Text PDFElife
January 2025
Department of Neurology, Baylor College of Medicine, Houston, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!