Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we focus on the automation of facial reconstruction. Since they consider the whole head as the object of interest, usual reconstruction techniques are global and involve a large number of parameters to be estimated. We present a local technique which aims at reaching a good trade-off between bias and variance following the paradigm of non-parametric statistics. The estimation is localized on patches delimited by surface geodesics between anatomical points of the skull. The technique relies on a continuous representation of the individual surfaces embedded in the vectorial space of extended normal vector fields. This allows to compute deformations and averages of surfaces. It consists in estimating the soft-tissue surface over patches. Using a homogeneous database described in [31], we obtain results on the chin and nasal regions with an average error below 1mm, outperforming the global reconstruction techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2010.03.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!