Bone marrow stem cells and liver regeneration.

Exp Hematol

Department of Animal Biotechnology, University of Nevada, Reno, Reno, NV 89557-0104, USA.

Published: July 2010

Development of new approaches to treat patients with hepatic diseases that can eliminate the need for liver transplantation is imperative. Use of cell therapy as a means of repopulating the liver has several advantages over whole-organ transplantation because it would be less invasive, less immunogenic, and would allow the use, in some instances, of autologous-derived cells. Stem/progenitor cells that would be ideal for liver repopulation would need to have characteristics such as availability and ease of isolation, the ability to be expanded in vitro, ensuring adequate numbers of cells, susceptibility to modification by viral vector transduction/genetic recombination, to correct any underlying genetic defects, and the ability of restoring liver function following transplantation. Bone marrow-derived stem cells, such as hematopoietic, mesenchymal and endothelial progenitor cells possess some or most of these characteristics, making them ideal candidates for liver regenerative therapies. Here, we will summarize the ability of each of these stem cell populations to give rise to functional hepatic elements that could mediate repair in patients with liver damage/disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882990PMC
http://dx.doi.org/10.1016/j.exphem.2010.04.007DOI Listing

Publication Analysis

Top Keywords

stem cells
8
liver
7
cells
6
bone marrow
4
marrow stem
4
cells liver
4
liver regeneration
4
regeneration development
4
development approaches
4
approaches treat
4

Similar Publications

Stemness-associated cell states are linked to chemotherapy resistance in AML. We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance.

View Article and Find Full Text PDF

CD30-directed CART cell therapy (CART30) has limited efficacy in relapsed or refractory patients with CD30+ lymphoma, with a low proportion of durable responses. We have developed an academic CART30 cell product (HSP-CAR30) by combining strategies to improve performance. HSP-CAR30 targets a proximal epitope within the non-soluble part of CD30, and the manufacturing process includes a modulation of ex vivo T cell activation, as well as the addition of interleukin-21 to IL-7 and IL-15 to promote stemness of T cells.

View Article and Find Full Text PDF

Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.

View Article and Find Full Text PDF

Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies.

View Article and Find Full Text PDF

Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!