Background: Remote manipulation of wireless capsule endoscopes might improve diagnostic accuracy and facilitate therapy.

Objective: To test a new capsule-manipulation system.

Setting: University hospital.

Design And Interventions: A first-in-human study tested a new magnetic maneuverable wireless capsule in a volunteer. A wireless capsule endoscope was modified to include neodymium-iron-boron magnets. The capsule's magnetic switch was replaced with a thermal one and turned on by placing it in hot water. One imager was removed from the PillCam colon-based capsule, and the available space was used to house the magnets. A handheld external magnet was used to manipulate this capsule in the esophagus and stomach. The capsule was initiated by placing it in a microg of hot water. The capsule was swallowed and observed in the esophagus and stomach by using a gastroscope. Capsule images were viewed on a real-time viewer.

Main Outcome Measurements: The capsule was manipulated in the esophagus for 10 minutes. It was easy to make the capsule turn somersaults and to angulate at the cardioesophageal junction. In the stomach, it was easy to move the capsule back from the pylorus to the cardioesophageal junction and hold/spin the capsule at any position in the stomach. The capsule in the esophagus and stomach did not cause discomfort.

Limitations: Magnetic force varies with the fourth power of distance.

Conclusions: This study suggests that remote manipulation of a capsule in the esophagus and stomach of a human is feasible and might enhance diagnostic endoscopy as well as enable therapeutic wireless capsule endoscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gie.2010.01.064DOI Listing

Publication Analysis

Top Keywords

wireless capsule
20
esophagus stomach
20
capsule
16
capsule esophagus
12
manipulation wireless
8
capsule endoscope
8
remote manipulation
8
hot water
8
stomach capsule
8
cardioesophageal junction
8

Similar Publications

Reducing reading time and assessing disease in capsule endoscopy videos: A deep learning approach.

Int J Med Inform

January 2025

University of Coimbra, Faculty of Medicine, Coimbra, Portugal; Department of Gastroenterology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal. Electronic address:

Background: The wireless capsule endoscope (CE) is a valuable diagnostic tool in gastroenterology, offering a safe and minimally invasive visualization of the gastrointestinal tract. One of the few drawbacks identified by the gastroenterology community is the time-consuming task of analyzing CE videos.

Objectives: This article investigates the feasibility of a computer-aided diagnostic method to speed up CE video analysis.

View Article and Find Full Text PDF

Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review.

Sensors (Basel)

January 2025

Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.

Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.

View Article and Find Full Text PDF

In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.

View Article and Find Full Text PDF

The rapid development of wireless power transfer (WPT) technology has provided new avenues for supplying continuous and stable power to capsule robots. In this article, we propose a two-dimensional omnidirectional wireless power transfer (OWPT) system, which enables power to be transmitted effectively in multiple spatial directions. This system features a three-dimensional transmitting structure with a Helmholtz coil and saddle coil pairs, combined with a one-dimensional receiving structure.

View Article and Find Full Text PDF

Background: Wireless capsule endoscopy (WCE) has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging technology. However, the complexity of the digestive tract structure, and the diversity of lesion types, results in different sites and types of lesions distinctly appearing in the images, posing a challenge for the accurate identification of digestive tract diseases.

Aim: To propose a deep learning-based lesion detection model to automatically identify and accurately label digestive tract lesions, thereby improving the diagnostic efficiency of doctors, and creating significant clinical application value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!