Introduction: Recently, some studies have compared mineral trioxide aggregate (MTA) with Portland cements, concluding that the principal ingredients of Portland cements are similar to those of MTA. The purpose of the present study was to evaluate the effect of gray MTA, white MTA, and gray and white Portland cements on inflammatory cells in rats.

Methods: Fresh mixtures mixed with distilled water were placed in polyethylene tubes, which were implanted in the dorsal subcutaneous connective tissue of 60 Sprague-Dawley rats along with empty tubes as controls. Tissue specimens were collected after the rats were sacrificed after 7, 15, 30, 60, and 90 days. The specimens were fixed, stained, processed, and histologically evaluated under a light microscope. Inflammatory reactions were classified as grade 0: without inflammatory cells, grade I: sporadic infiltration of inflammatory cells, grade II: moderate infiltration (<25 cells), grade III: dense and severe infiltration (25-125 cells), and grade IV: very dense and severe infiltration (>125 cells). Data were analyzed with the nonparametric (two factor) analysis of variance and Kruskal-Wallis H-test.

Results: All the groups showed grade III inflammation after 7 and 15 days; there was a decrease in the inflammatory process after 30, 60, and 90 days. After 90 days, gray MTA, white MTA, and control groups had grade 0 inflammatory process, but gray Portland cement and white Portland cement groups showed grade 0 to grade I inflammatory processes.

Conclusion: MTAs were more biocompatible; however, more studies are required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2010.01.001DOI Listing

Publication Analysis

Top Keywords

portland cements
16
inflammatory cells
16
grade inflammatory
12
groups grade
12
mineral trioxide
8
inflammatory
8
cements inflammatory
8
gray mta
8
mta white
8
white mta
8

Similar Publications

Study of hydrophobic cemented paste backfill (H-CPB) to prevent sulphate attack.

Heliyon

November 2024

Department of Mining Engineering, Faculty of Engineering, Hadimkoy Campus, Istanbul University - Cerrahpasa, 34500, Istanbul, Turkiye.

One of the challenges encountered in mining is acid mine drainage (AMD) in sulphurous ores in response to rainfall and groundwater. CPB one of the most prevalent waste management systems addresses this issue today. Nevertheless, in the long term, the concretion in CPB may become ineffective because of external factors, such as groundwater and rainfall.

View Article and Find Full Text PDF

Effect of boron oxide on stability of high-ferrite Portland cement clinker in low-temperature calcination.

Sci Rep

December 2024

Huaxin Cement Co., Ltd, Huaxin Building, No. 426, Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan, 430070, China.

Article Synopsis
  • The study examines the difficulties of producing high-ferrite Portland cement clinker at low temperatures and investigates boron oxide as a potential stabilizing agent.
  • Researchers found that at 1350 °C, the HFPC clinker suffers from severe pulverization due to a metastable phase, prompting the exploration of various stabilizers.
  • While multiple agents showed promise, boron oxide emerged as the best option, with a maximum recommended content of 1% to avoid destabilization that impacts early strength development, highlighting a pathway to lower energy use and emissions in cement production.
View Article and Find Full Text PDF

Improving highway bases is the most crucial step that enhances pavements' performance and long-term durability. Lime and Portland cement are commonly used in soil stabilization endeavors. Nevertheless, the substantial carbon emissions associated with cement and lime manufacturing have led to a growing interest in researching environmentally friendly additives.

View Article and Find Full Text PDF

With the continuous clamor for a reduction in embodied carbon in cement, rapid solution to climate change, and reduction to resource depletion, studies into substitute binders become crucial. These cementitious binders can potentially lessen our reliance on cement as the only concrete binder while also improving concrete functional properties. Finer particles used in cement microstructure densify the pore structure of concrete and enhance its performance properties.

View Article and Find Full Text PDF

The incorporation of residues in cement matrices is a viable alternative for obtaining new products for civil construction and a sustainable solution for the disposal of materials discarded by industries. In this context, the objective of the study was to evaluate the potential use of quartzite and particles of Hevea brasiliensis in the production of cement-wood panels. Quartzite residues and Hevea brasiliensis wood particles were obtained and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!