Importance Of The Field: Despite numerous advances made during the last decade in brain tumor therapy, the prognosis of glioblastoma has not improved and these tumors inevitably recur with no effective treatment. Thus, any new therapeutic strategy to target this most malignant tumor will be of significant benefit. RNAi is a powerful gene silencing method that might be used in combination with other agents to improve the efficacy of glioblastoma treatment.
Areas Covered In This Review: Recent progress and challenges of pre-clinical and clinical research of RNAi therapy for glioblastoma. The review covers literature from 2003 to 2009.
What The Reader Will Gain: The principle of RNA interference therapy, three categories of RNAi triggers, different RNAi delivery system and pre-clinical and clinical studies that are currently underway to evaluate the validity of RNAi as a potential therapeutic strategy against glioblastoma are discussed.
Take Home Message: RNA inference therapy combined with other therapeutics may offer therapeutic potential for glioblastoma multiforme. Further studies are required to develop more efficient and specific delivery systems, select suitable gene targets, optimize treatment dose and administration schedule, evaluate the efficacy of combination treatment strategies, establish a validated clinical response measure system etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14712598.2010.481667 | DOI Listing |
PLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.
View Article and Find Full Text PDFInsect Sci
January 2025
Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China.
Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins.
View Article and Find Full Text PDFInsect Sci
January 2025
Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear.
View Article and Find Full Text PDFParasitol Res
January 2025
Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Physiology and Pharmacology, Children's Health Research Institute and London Health Sciences Centre Research Institute, London, ON, Canada.
In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!