The electrical and friction properties of ω-(trans-4-stilbene)alkylthiol self-assembled monolayers (SAMs) on Au(111) were investigated using atomic force microscopy (AFM) and near edge X-ray absorption fine structure spectroscopy (NEXAFS). The sample surface was uniformly covered with a molecular film consisting of very small grains. Well-ordered and flat monolayer islands were formed after the sample was heated in nitrogen at 120 °C for 1 h. While lattice resolved AFM images revealed a crystalline phase in the islands, the area between islands showed no order. The islands exhibit substantial reduction (50%) in friction, supporting the existence of good ordering. NEXAFS measurements revealed an average upright molecular orientation in the film, both before and after heating, with a narrower tilt-angle distribution for the heated fim. Conductance-AFM measurements revealed a 2 orders of magnitude higher conductivity on the ordered islands than on the disordered phase. We propose that the conductance enhancement is a result of a better π-π stacking between the trans-stilbene molecular units as a result of improved ordering in islands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la100837g | DOI Listing |
ACS Omega
January 2025
Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Wuhan 430063, China.
Wearable thermoelectric generator (TEG) can collect human body heat and convert it into electrical energy, achieving self-powering of the device and thus becoming a hot research topic at present. By utilization of three-dimensional spiral thin-film thermoelectric structures and passive radiation cooling methods, the heat transfer area can be increased and power generation can be enhanced. In order to study the effect of outdoor radiation cooling on the thermoelectric performance of spiral heating, as well as the TEG performance output under different external environments and circuit loads, this paper proposes a new three-dimensional coupled numerical model of the spiral thermoelectric wristband system with multiple physical fields.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Mechanical and Electrical Engineering Department, Polish Naval Academy, 81-103 Gdynia, Poland.
This study presents the optimization of the friction stir welding (FSW) process using polynomial regression to predict the maximum tensile load (MTL) of welded joints. The experimental design included varying spindle speeds from 600 to 2200 rpm and welding speeds from 100 to 350 mm/min over 28 experimental points. The resulting MTL values ranged from 1912 to 15,336 N.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, China.
To investigate the effect of the initial surface roughness on the performance at the initial stage of the current-carrying friction of an elastic friction pair, experiments were conducted using a self-made current-carrying friction and wear tester. The results indicate that under the experimental conditions, the lifespan of the friction pair decreases as the surface roughness and load decrease. When the surface roughness is Ra 0.
View Article and Find Full Text PDFBiomolecules
January 2025
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
The interaction between molecular targeted therapy drugs and target proteins is crucial with regard to the drugs' anti-tumor effects. Electric fields can change the structure of proteins, which determines the interaction between drugs and proteins. However, the regulation of the interaction between drugs and target proteins and the anti-tumor effects of electric fields have not been studied thoroughly.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 H. Jordan Str., 41-808 Zabrze, Poland.
One of the most important formalisms used to describe membrane transport is Onsager-Peusner thermodynamics (TOP). Within the TOP framework, a procedure has been developed for the transformation of the Kedem-Katchalsky (K-K) equations for the transport of binary electrolytic solutions across a membrane into the Kedem-Katchalsky-Peusner (K-K-P) equations. The membrane system with an Ultra Flo 145 Dialyser membrane used for hemodialysis and aqueous NaCl solutions was used as experimental setup.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!