The long-pulse (200-350 micros) Holmium: YAG (Ho: YAG) laser (lambda = 2.12 microm) is used extensively in urology for laser lithotripsy. The long-pulse Erbium: YAG (Er: YAG) laser (lambda = 2.94 microm) fragments urinary calculi up to 5 times more efficiently than the Ho: YAG laser, however, no optical fibers are available to transmit efficiently 2.94 microm laser light for laser lithotripsy. We report results of a study evaluating a fluoride glass fiber to transmit Er: YAG laser light for laser lithotripsy and compare to a sapphire fiber that provides good transmission of Er: YAG light at low irradiance. The fluoride fiber provides superior light transmission efficiency over the sapphire fiber at an Er: YAG wavelength (2.94 microm). The sapphire fiber provides a more durable and robust delivery waveguide than the fluoride fiber when ablating urinary calculi in contact mode. Results of our study suggest that further development to improve performance of fluoride fibers for laser lithotripsy is warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.200900104DOI Listing

Publication Analysis

Top Keywords

yag laser
20
laser lithotripsy
20
294 microm
12
sapphire fiber
12
laser
10
yag
9
optical fibers
8
lithotripsy long-pulse
8
yag yag
8
laser lambda
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!