Near-infrared (NIR) reflection spectroscopy was used for the determination of the thickness or the coating weight, respectively, of white-pigmented acrylic coatings and layers of printing inks. The thickness of coatings was studied in the range from 5 to 60 microm, whereas the coating weights of the printed layers covered a range between 1 to 5 g m(-2). Quantitative analysis of the spectral data relied on partial least squares (PLS) regression. A thickness gauge or gravimetry, respectively, were used to obtain reference data. Calibration models were typically based on six factors. The corresponding root mean square errors of prediction (RMSEP) were found to be on the order of 0.87 for coatings and 0.38 for printed layers. Monitoring of the coating thickness under process conditions was carried out on a pilot-scale roll coating machine. In order to simulate thickness changes during a coating process, either the nip between the applicator rolls or the web speed was varied. Data with high precision (standard deviation approximately 1 microm for coatings, approximately 0.4 g m(-2) for printed layers) and an excellent correlation with off-line reference data were obtained. The investigations have shown that NIR spectroscopy can be used for process control in coating and curing technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/000370210791114310 | DOI Listing |
Sci Rep
January 2025
Department of Orthodontics and Dentofacial Orthopedics, University Medical Center of the Johannes Gutenberg-University Mainz, Augustusplatz 2, 55131, Mainz, Germany.
Direct printed aligners (DPAs) offer benefits like the ability to vary layer thickness within a single DPA and to 3D print custom-made removable orthodontic appliances. The biocompatibility of appliances made from Tera Harz TA-28 (Graphy Inc., Seoul, South Korea) depends on strict adherence to a standardized production and post-production protocol, including UV curing.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:
Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W Boyd St., Norman, OK 73019, USA.
With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.
The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!