Aim: The aim of the study is to assess the effects of an intravenous 10 mg/kg loading dose of caffeine base in cerebral oxygenation, cerebral Doppler blood flow velocity and cardiac output in preterm infants.
Methods: Preterm neonates <34 weeks gestation were investigated at 1 and 4 h following the loading dose of caffeine using Doppler cerebral sonography, cardiac echocardiography and cerebral spatially resolved near-infrared spectroscopy.
Results: Forty infants were studied with a mean gestational age (mean ± standard deviation) of 27.7 (±2.5) weeks, birth weight of 1155 (±431) g and a postnatal age of 2.8 (±2.2) days. Mean Anterior Cerebral Artery peak and time average mean blood flow velocity fell significantly by 14% and 17.7%, respectively at 1 h post-caffeine loading dose, which recovered partially by 4 h. Cerebral Tissue Oxygenation Index fell from pre-dose levels by 9.5% at 1 h with partial recovery to 4.9% reduced at 4 h post-dose. There were no significant changes in left or right ventricular output, transcutaneous oxygen saturation, transcutaneous PCO(2) or total vascular resistance.
Conclusions: A loading dose of 10 mg/kg caffeine base resulted in significant reduction at 1 h post-dose in cerebral oxygenation and cerebral blood flow velocity with partial recovery at 4 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1651-2227.2010.01828.x | DOI Listing |
J Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.
View Article and Find Full Text PDFOxidative stress is a prominent feature of Alzheimer's disease. Within this context, cholesterol undergoes oxidation, producing the pro-inflammatory product 7-ketocholesterol (7-KC). In this study, we observe elevated levels of 7-KC in the brains of the 3xTg mouse model of AD.
View Article and Find Full Text PDFCerebrospinal fluid (CSF) dynamics, driven by sensory stimulation-induced neuronal activity, is crucial for maintaining homeostasis and clearing metabolic waste. However, it remains unclear whether such CSF flow is impaired in age-related neurodegenerative diseases of the visual system. This study addresses this gap by examining CSF flow during visual stimulation in glaucoma patients and healthy older adults using functional magnetic resonance imaging.
View Article and Find Full Text PDFThe complementary strengths of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have driven extensive research into integrating these two noninvasive modalities to better understand the neural mechanisms underlying cognitive, sensory, and motor functions. However, the precise neural patterns associated with motor functions, especially imagined movements, remain unclear. Specifically, the correlations between electrophysiological responses and hemodynamic activations during executed and imagined movements have not been fully elucidated at a whole-brain level.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.
Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!