Various nitrophenyl-containing organic layers have been electrografted to glassy carbon surfaces using diazonium chemistry to elucidate the extent by which the layer structure influences the solvent (i.e., acetonitrile) accessibility, electroactivity, and chemical reactivity of the films. For most of these films, cyclic voltammetric and impedance spectroscopy measurements show that the electron-transfer process at the electrode is facile and independent of film thickness and structure. This is consistent with the occurrence of self-mediated electron transfers throughout the film with nitrophenyl groups serving as redox stations. Importantly, this behavior is seen only after the first potential sweep, the effect of which is to increase the porosity of the layer by inducing an irreversible desorption of nonchemisorbed material along with a reorganization of the film structure. From a kinetic point of view, the radical anions of surface-attached nitrophenyl groups are reactive toward the residual water present in acetonitrile. Thin layers (thickness of 1 to 2 nm) containing redox-active groups only in the outer part of the layer are protonated two to three times as fast as groups located in a more hydrophobic but still solvent-accessible inner layer. Hence, kinetic measurements can detect small differences in the layer environment. Finally, a deconvolution of the cyclic voltammetric response of an electrode grafted from 4-nitrobenzenediazonium discloses that roughly 25% of the overall signal can be attributed to the presence of 4-azonitrophenyl moieties introduced during the electrografting process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la1006428DOI Listing

Publication Analysis

Top Keywords

nitrophenyl groups
12
cyclic voltammetric
8
layer
5
groups diazonium-generated
4
diazonium-generated multilayered
4
multilayered films
4
films electrochemically
4
electrochemically responsive?
4
responsive? nitrophenyl-containing
4
nitrophenyl-containing organic
4

Similar Publications

The novel pleuromutilin derivative 22-((4-((4-nitrophenyl)acetamido)phenyl)thio)deoxy pleuromutilin possesses robust anti-mycoplasma activity both and .

Front Pharmacol

December 2024

Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

Objective: Mycoplasmas are structurally simple pathogenic microorganisms that can cause a wide range of diseases in humans and animals and conventional antibiotic therapies of fluoroquinolones and tetracyclines are toxic to young children and young animals and macrolide resistance is increasing. In this context, new anti-mycoplasma antimicrobial agents need to be developed. 22-((4-((4-nitrophenyl)acetamido)phenyl)thio)deoxypleuromutilin (compound 16C) is a novel acetamine phenyl pleuromutilin derivative.

View Article and Find Full Text PDF

In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.

View Article and Find Full Text PDF

We designed a new cyanide sensing probe by one-step synthesis and evaluated it using UV-vis and fluorescent techniques. The active moiety of (Z)-3-(4-(methylthio) phenyl)-2-(4-nitrophenyl) acrylonitrile (NCS) demonstrated fluorescence. The probe NCS showed turn-off fluorescence in the presence of cyanide (CN¯), which has a higher selectivity and sensitivity than other anions.

View Article and Find Full Text PDF

Photoinduced Deprotection of 2-Nitrophenylneopentyl Glycol Boronates Enables Light-Triggered Polycondensation of Siloxanes.

Chemistry

December 2024

Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux, CNRS, Bordeaux INP, 351 Cours de la libération, 33405, Talence cedex, France.

Various protecting groups have been developed for boronic acids, mostly based on diols. Alternatives include trifluoroborates and amine complexes, which offer easier synthesis and release under milder conditions. We present here a new strategy involving photocleavable protecting groups for boronic and borinic acids, based on the 2-nitrobenzyl motif.

View Article and Find Full Text PDF

Reliable corrosion inhibition systems are crucial for extending the lifespan of industrial metal structures. Quinolines, with their high adsorption capacity and protective efficiency, are promising next-generation inhibitors. However, the impact of substitutions on their coordination with iron surfaces requires deeper understanding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!