Transintestinal cholesterol efflux.

Curr Opin Lipidol

Academic Medical Center, AMC Liver Center, Amsterdam, The Netherlands.

Published: June 2010

AI Article Synopsis

Article Abstract

Purpose Of Review: Regulation of cholesterol homeostasis is a complex interplay of a multitude of metabolic pathways situated in different organs. The liver plays a central role and has received most attention of the research community. In this review, we discuss recent progress in the understanding of the emerging role of the intestine in cholesterol transport.

Recent Findings: In recent years, insight in the transport systems that mediate intestinal cholesterol excretion has deepened considerably. Evidence is emerging that the proximal part of the small intestine is able to secrete cholesterol actively, a pathway called transintestinal cholesterol efflux (TICE). In mice, TICE accounts for up to 70% of fecal neutral sterol excretion.

Summary: The small intestine plays a significant role in the regulation of body cholesterol homeostasis. Active processes control both absorption and excretion of the sterol and the pathways involved are being elucidated. TICE might provide an attractive target for therapy aiming at reduction of atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MOL.0b013e3283395e45DOI Listing

Publication Analysis

Top Keywords

transintestinal cholesterol
8
cholesterol efflux
8
cholesterol homeostasis
8
small intestine
8
cholesterol
6
efflux purpose
4
purpose review
4
review regulation
4
regulation cholesterol
4
homeostasis complex
4

Similar Publications

Article Synopsis
  • Silicon in restructured meat (RM) demonstrated antidiabetic and cholesterol-lowering effects in a rat model for type 2 diabetes (T2DM), promoting better bile acid and cholesterol metabolism.
  • Consumption of silicon-RM reduced the bile acid pool and improved intestinal barrier integrity by increasing occludin levels, suggesting a protective effect against fat digestion damage.
  • The study proposes that incorporating silicon into meat products could serve as a potential nutritional therapy for managing diabetic dyslipidemia.
View Article and Find Full Text PDF

Hepatic FXR-FGF4 is required for bile acid homeostasis via an FGFR4-LRH-1 signal node under cholestatic stress.

Cell Metab

January 2025

Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. Electronic address:

Bile acid (BA) homeostasis is vital for various physiological processes, whereas its disruption underlies cholestasis. The farnesoid X receptor (FXR) is a master regulator of BA homeostasis via the ileal fibroblast growth factor (FGF)15/19 endocrine pathway, responding to postprandial or abnormal transintestinal BA flux. However, the de novo paracrine signal mediator of hepatic FXR, which governs the extent of BA synthesis within the liver in non-postprandial or intrahepatic cholestatic conditions, remains unknown.

View Article and Find Full Text PDF

Silicon included in a restructured meat (RM) matrix (Si-RM) as a functional ingredient has been demonstrated to be a potential bioactive antidiabetic compound. However, the jejunal and hepatic molecular mechanisms by which Si-RM exerts its cholesterol-lowering effects remain unclear. Male Wistar rats fed an RM included in a high-saturated-fat high-cholesterol diet (HSFHCD) combined with a low dose of streptozotocin plus nicotinamide injection were used as late-stage type 2 diabetes mellitus (T2DM) model.

View Article and Find Full Text PDF

Fisetin, a dietary flavonoid, promotes transintestinal cholesterol excretion through the activation of PPARδ.

Food Res Int

January 2024

College of Public Health, Zhengzhou University, Zhengzhou, China; Food Laboratory of Zhongyuan, Luohe, China; Nutrition and Health Food Research Institute, Zhengzhou University, Zhengzhou, China. Electronic address:

Fisetin, a dietary polyphenol abundantly found in strawberries, exhibits a broad spectrum of health-promoting activities, including antihyperlipidemic effects. This study aimed to investigate the regulatory effect of fisetin on cholesterol elimination through novel transintestinal cholesterol excretion (TICE) pathway. A hypercholesterolemic mouse model and human colon epithelial cancer cell line Caco-2 were utilized to conduct the study.

View Article and Find Full Text PDF

Association of ABCG5 and ABCG8 Transporters with Sitosterolemia.

Adv Exp Med Biol

December 2023

Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.

Sitosterolemia is a rare genetic lipid disorder, mainly characterized by the accumulation of dietary xenosterols in plasma and tissues. It is caused by inactivating mutations in either ABCG5 or ABCG8 subunits, a subfamily-G ATP-binding cassette (ABCG) transporters. ABCG5/G8 encodes a pair of ABC half transporters that form a heterodimer (G5G8).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!