Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ginsenoside Rg(1) (Rg(1)), one of the active components of Panax ginseng, has been reported to promote endogenous nitric oxide (NO) production in some tissues, and to inhibit left ventricular (LV) hypertrophy in rats. This study aimed to investigate whether Rg(1)-induced inhibition of rat LV hypertrophy is mediated by NO-production. Rat LV hypertrophy was induced by abdominal aorta coarctation. Rg(1) 15 mg/kg/d, L-arginine 200 mg/kg/d, and the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) 100 mg/kg/d used with the same dose of L-arginine or Rg(1) were given starting from 1 d after surgery for 21 consecutive days. LV hypertrophy was evidenced by determining LV weight and mRNA expression of atrial natriuretic peptide, a marker of cardiac hypertrophic response, as well as by histopathology. Rg(1) and L-arginine administration significantly reduced the elevated LV hypertrophic parameters independent of LV systolic pressure changing, and ameliorated the histopathology of LV myocardium and LV diastolic function. All the beneficial effects of Rg(1) and L-arginine were abolished or blunted by L-NAME. Further to examine the role of NO in Rg(1) inhibition on LV hypertrophy, expression of endothelial NOS was determined at the transcript levels. In our experimental conditions endothelial NOS mRNA expression in LV tissue was lowered by abdominal aorta coarctation, and upregulated by Rg(1) administration. These results demonstrate that Rg(1)-induced protection against LV hypertrophy elicited by abdominal aorta coarctation in rats is mediated, at least in part, via endogenous NO production and release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.33.631 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!