In the present study, we investigated the effects of a Kampo medicine Orento (TJ-120) on the production of prostaglandin E(2) (PGE(2)), interleukin (IL)-6 and IL-8 by human gingival fibroblasts (HGFs) treated with lipopolysaccharide from Porphyromonas gingivalis (PgLPS). HGFs proliferation was dose-dependently decreased with Orento at days 3 and 7. However, treatment with PgLPS (10 ng/ml), Orento (up to 1 mg/ml) and their combinations for 24 h did not affect the viability of HGFs. Orento suppressed PgLPS-induced PGE(2) production in a dose-dependent manner but did not alter basal PGE(2) level. In contrast, Orento did not alter PgLPS-induced IL-6 and IL-8 productions. These alterations by Orento were similar to those by a mitogen-activated protein kinase kinase (MAPKK/MEK) inhibitor, PD98059. A Orento showed no effect on cyclooxygenase (COX)-1 and COX-2 activities, and increased cytoplasmic phospholipase A(2) (cPLA(2)) expression and increased PgLPS-induced COX-2 expression. Orento suppressed PgLPS-induced mobility retardation of cPLA(2) band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels, that is cPLA(2) phosphorylation and its activation, while Orento alone did not alter cPLA(2) phosphorylation. Orento suppressed PgLPS-induced extracellular signal-regulated kinase (ERK) phosphorylation, which is known to lead to ERK activation and cPLA(2) phosphorylation. These results suggest that Orento decreased PGE(2) production by inhibition of cPLA(2) phosphorylation and its activation via inhibition of ERK phosphorylation, and also that Orento may be useful to improve gingival inflammation in periodontal disease.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.33.611DOI Listing

Publication Analysis

Top Keywords

cpla2 phosphorylation
16
orento
13
orento suppressed
12
suppressed pglps-induced
12
phosphorylation orento
12
effects kampo
8
kampo medicine
8
medicine orento
8
human gingival
8
gingival fibroblasts
8

Similar Publications

Luteal fibroblasts produce prostaglandins in response to IL1β in a MAPK-mediated manner.

Mol Cell Endocrinol

January 2025

Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA; US Department of Veterans Affairs VA Medical Center, Omaha, NE, USA. Electronic address:

The corpus luteum is a temporary endocrine gland that is crucial for pregnancy, as it produces the progesterone needed to maintain optimal uterine conditions for implantation. In the absence of a conceptus, the corpus luteum becomes non-functional and undergoes rapid tissue remodeling to regress into a fibrotic corpus albicans. Early luteal regression is characterized by increased cytokine release.

View Article and Find Full Text PDF

The neuroinflammatory response promotes secondary brain injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 1 (TREM1) is a key regulator of inflammation. However, the role of TREM1 in TBI is poorly studied.

View Article and Find Full Text PDF

Background: Platelets, a type of anucleated cell, play a crucial role in cardiovascular diseases (CVDs). Therefore, targeting platelet activation is essential for mitigating CVDs. Endogenous agonists, such as collagen, activate platelets by initiating signal transduction through specific platelet receptors, leading to platelet aggregation.

View Article and Find Full Text PDF

Homocysteine Promotes Intestinal Inflammation in Colitis Mice Through the PGE2/STAT3 Signaling Pathway.

Dig Dis Sci

October 2024

Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China.

Background: Our previous study indicated that Hcy exacerbated DSS-induced colitis by facilitating the differentiation of intestinal T helper cell 17 (Th17), but the precise mechanism remains unidentified. Therefore, our current research aims to elucidate the signaling pathway through which Hcy promotes the differentiation of Th17 cells.

Methods: BALb/c mice were randomly assigned into six groups.

View Article and Find Full Text PDF

Protection of blood-brain barrier by endothelial DAPK1 deletion after stroke.

Biochem Biophys Res Commun

September 2024

Department of Pharmacy, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China; Huaian Clinical College of Xuzhou Medical University, Huaian, 223300, China. Electronic address:

Death-associated protein kinase (DAPK) 1 is a critical mediator for neuronal cell death in cerebral ischemia, but its role in blood-brain barrier (BBB) disruption is incompletely understood. Here, we found that endothelial-specific deletion of Dapk1 using Tie2 Cre protected the brain of Dapk1 mice against middle cerebral artery occlusion (MCAO), characterized by mitigated Evans blue dye (EBD) extravasation, reduced infarct size and improved behavior. In vitro experiments also indicated that DAPK1 deletion inhibited oxygen-glucose deprivation (OGD)-induced tight junction alteration between cerebral endothelial cells (CECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!