It was previously reported that piperine (PIP) significantly blocks convulsions induced by intracerebroventricular injection of threshold doses of kainate, but had no or only slight effects on convulsions induced by L-glutamate, N-methyl-D-aspartate and guanidinosuccinate. In traditional Chinese medicine, black pepper has been used for epileptic treatment; however, the exact mechanism is still unclear. We reported here in that appropriate concentration of PIP effectively inhibites the synchronized oscillation of intracellular calcium in rat hippocampal neuronal networks and represses spontaneous synaptic activities in terms of spontaneous synaptic currents (SSC) and spontaneous excitatory postsynaptic currents (sEPSC). Moreover, pretreatment with PIP expects protective effect on glutamate-induced decrease of cell viability and apoptosis of hippocampal neurons. These data suggest that the neuroprotective effects of PIP might be associated with suppression of synchronization of neuronal networks, presynaptic glutamic acid release, and Ca(2+) overloading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.33.598 | DOI Listing |
J Ethnopharmacol
December 2024
Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China. Electronic address:
Ethnopharmacological Relevance: Cognitive dysfunction is a common complication of chronic insomnia. Liuwei Anshen Capsules (LAC), a traditional Chinese patent medicine clinically prescribed for insomnia, has been proved to possess good efficacy in reducing insomnia complications including dementia and anxiety in clinic. However, the active substances in LAC and their mechanisms in treating cognitive deficit associated with sleep disorders remain unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China. Electronic address:
This study aims to develop and evaluate a novel therapeutic strategy for Alzheimer's disease (AD) by overcoming the blood-brain barrier (BBB) limitations of Neurotrophin-3 (NT-3). NT-3, a critical neurotrophic factor, plays essential roles in hippocampal neuron growth, survival, and synaptic plasticity, making it a promising candidate for AD treatment. However, its clinical application is hindered by its inability to cross the BBB.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea.
The early detection of neurodegenerative diseases necessitates the identification of specific brain-derived biomolecules in peripheral blood. In this context, our investigation delineates the role of amyloid precursor-like protein 1 (APLP1)-a protein predominantly localized in oligodendrocytes and neurons-as a previously unidentified biomarker in extracellular vesicles (EVs). Through rigorous analysis, APLP1 EVs from human sera were unequivocally determined to be of cerebral origin.
View Article and Find Full Text PDFJ Neurosci
December 2024
Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713, USA
Perineuronal nets (PNNs) are a specialized extracellular matrix that surround certain populations of neurons, including (inhibitory) parvalbumin (PV) expressing-interneurons throughout the brain and (excitatory) CA2 pyramidal neurons in hippocampus. PNNs are thought to regulate synaptic plasticity by stabilizing synapses and as such, could regulate learning and memory. Most often, PNN functions are queried using enzymatic degradation with chondroitinase, but that approach does not differentiate PNNs on CA2 neurons from those on adjacent PV cells.
View Article and Find Full Text PDFChem Biodivers
December 2024
Southern Medical University, School of Pharmaceutical Sciences, 1838 Guangzhou Avenue North, 510515, Guangzhou, CHINA.
Twelve new compounds, named fuscoposides A -L (1-12), including two phenolic, nine benzenoid, and one phenylethanoid glucosides, were isolated from the mangrove endophytic fungus Fuscoporia sp. A2A6. The structures of these compounds were established by HRESIMS, NMR spectroscopic data, single-crystal X-ray diffraction analysis, and chemical methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!