Cytochrome P450-mediated detoxification is one of the most important mechanisms involved in insecticide resistance. However, the molecular basis of this mechanism and the physiological functions of P450s associated with insecticide resistance remain largely unknown. Here, we exploited the functional genomics and reverse genetic approaches to identify and characterize a P450 gene responsible for the majority of deltamethrin resistance observed in the QTC279 strain of Tribolium castaneum. We used recently completed whole-genome sequence of T. castaneum to prepare custom microarrays and identified a P450 gene, CYP6BQ9, which showed more than a 200-fold higher expression in the deltamethrin-resistant QTC279 strain when compared with its expression in the deltamethrin-susceptible Lab-S strain. Functional studies using both double-strand RNA (dsRNA)-mediated knockdown in the expression of CYP6BQ9 and transgenic expression of CYP6BQ9 in Drosophila melanogaster showed that CYP6BQ9 confers deltamethrin resistance. Furthermore, CYP6BQ9 enzyme expressed in baculovirus metabolizes deltamethrin to 4-hydroxy deltamethrin. Strikingly, we also found that unlike many P450 genes involved in insecticide resistance that were reported previously, CYP6BQ9 is predominantly expressed in the brain, a part of the central nervous system (CNS) containing voltage-gated sodium channels targeted by deltamethrin. Taken together, the current studies on the brain-specific insect P450 involved in deltamethrin resistance shed new light on the understanding of the molecular basis and evolution of insecticide resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889294 | PMC |
http://dx.doi.org/10.1073/pnas.1000059107 | DOI Listing |
Sci Rep
January 2025
Biology Department, UAE University, P.O. Box 15551, Al Ain, UAE.
Culex quinquefasciatus is a widely spread mosquito species that poses a significant public health threat in many countries. This insect vector is present in the United Arab Emirates (UAE), yet no studies have been conducted on its resistance to any insecticide group. Research shows that controlling mosquitoes is crucial to eliminating mosquito-borne diseases, but when these vectors develop insecticide resistance, the situation can escalate dangerously out of control.
View Article and Find Full Text PDFHeliyon
January 2025
Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: is the vector of a large number of pathogens in humans. Use of insecticides to deal with this vector is the most important way to controlling it. However, in recent decades, resistance to insecticides has been reported in this vector.
View Article and Find Full Text PDFBMC Genomics
January 2025
Program in Public Health, College of Health Sciences, University of California, Irvine, California, USA.
Background: The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Here, we reported metabolic resistance mechanisms and demonstrated that multiple non-coding Ribonucleic Acids (ncRNAs) could play a potential role in An.
View Article and Find Full Text PDFInsect Sci
January 2025
National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China.
Aedes albopictus (Ae. albopictus) is widely distributed and can transmit many infectious diseases, and insecticide-based interventions play an important role in vector control. However, increased insecticide resistance has become a severe public health problem, and the clarification of its detailed mechanism is a matter of urgence.
View Article and Find Full Text PDFParasit Vectors
January 2025
National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
Background: Mosquitoes, as vectors of various pathogens, have been a public health risk for centuries. Human activities such as international travel and trade, along with climate change, have facilitated the spread of invasive mosquitoes and novel pathogens across Europe, increasing the risk of mosquito-borne disease introduction and their spread. Despite this threat, mosquito control in Hungary still relies predominantly on chemical treatments, which poses the risk of developing insecticide resistance in local populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!