Nervous system function requires tight control over the number of synapses individual neurons receive, but the underlying cellular and molecular mechanisms that regulate synapse number remain obscure. Here we present evidence that a trans-synaptic interaction between EphB2 in the presynaptic compartment and ephrin-B3 in the postsynaptic compartment regulates synapse density and the formation of dendritic spines. Observations in cultured cortical neurons demonstrate that synapse density scales with ephrin-B3 expression level and is controlled by ephrin-B3-dependent competitive cell-cell interactions. RNA interference and biochemical experiments support the model that ephrin-B3 regulates synapse density by directly binding to Erk1/2 to inhibit postsynaptic Ras/mitogen-activated protein kinase signaling. Together these findings define a mechanism that contributes to synapse maturation and controls the number of excitatory synaptic inputs received by individual neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889310PMC
http://dx.doi.org/10.1073/pnas.0910644107DOI Listing

Publication Analysis

Top Keywords

synapse density
16
individual neurons
8
regulates synapse
8
synapse
6
trans-synaptic ephb2-ephrin-b3
4
ephb2-ephrin-b3 interaction
4
interaction regulates
4
regulates excitatory
4
excitatory synapse
4
density
4

Similar Publications

Actin, a ubiquitous and highly conserved cytoskeletal protein, plays a pivotal role in various cellular functions such as structural support, facilitating cell motility, and contributing to the dynamic processes of synaptic function. Apart from its established role in inducing morphological changes, recent developments in the field indicate an active involvement of actin in modulating both the structure and function of pre- and postsynaptic terminals. Within the presynapse, it is involved in the organization and trafficking of synaptic vesicles, contributing to neurotransmitter release.

View Article and Find Full Text PDF

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

Aims: The comorbidity of anxiety-like symptoms in neuropathic pain (NP) is a significant yet often overlooked health concern. Anxiety sufferers may have a lower tolerance for pain, but which is difficult to treat. Accumulating evidence suggests a strong link between astrocytes and the manifestation of NP with concurrent anxiety-like behaviors.

View Article and Find Full Text PDF

MINFLUX nanoscopy relies on the localization of single fluorophores with expected ~ 2 nm precision in 3D mapping, roughly one order of magnitude better than standard stimulated emission depletion microscopy or stochastic optical reconstruction microscopy. This "brilliant" technique takes advantage of specialized localization principles and algorithms that require only dim fluorescence signals with a minimum flux of photons; hence the name follows. With this level of performance, MINFLUX imaging and tracking should allow for the routine study of biological processes down to the molecular scale, revealing previously unresolved details in cell structures, such as the organization of calcium channels in muscle cells or the clustering of receptors in synapses.

View Article and Find Full Text PDF

Flexible Neuromorphic Electronics for Wearable Near-Sensor and In-Sensor Computing Systems.

Adv Mater

January 2025

School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.

Flexible neuromorphic architectures that emulate biological cognitive systems hold great promise for smart wearable electronics. To realize neuro-inspired sensing and computing electronics, artificial sensory neurons that detect and process external stimuli must be integrated with central nervous systems capable of parallel computation. In near-sensor computing, synaptic devices, and sensors are used to emulate sensory neurons and receptors, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!