Globoid cell leukodystrophy (GLD) (Krabbe disease) is an autosomal recessive, degenerative, lysosomal storage disease caused by a severe loss of galactocerebrosidase (GALC) enzymatic activity. Of the >70 disease-causing mutations in the GALC gene, most are located outside of the catalytic domain of the enzyme. To determine how GALC mutations impair enzymatic activity, we investigated the impact of multiple disease-causing mutations on GALC processing, localization, and enzymatic activity. Studies in mammalian cells revealed dramatic decreases in GALC activity and a lack of appropriate protein processing into an N-terminal GALC fragment for each of the mutants examined. Consistent with this, we observed significantly less GALC localized to the lysosome and impairment in either the secretion or reuptake of mutant GALC. Notably, the D528N mutation was found to induce hyperglycosylation and protein misfolding. Reversal of these conditions resulted in an increase in proper processing and GALC activity, suggesting that glycosylation may play a critical role in the disease process in patients with this mutation. Recent studies have shown that enzyme inhibitors can sometimes "chaperone" misfolded polypeptides to their appropriate target organelle, bypassing the normal cellular quality control machinery and resulting in enhanced activity. To determine whether this may also work for GLD, we examined the effect of alpha-lobeline, an inhibitor of GALC, on D528N mutant cells. After treatment, GALC activity was significantly increased. This study suggests that mutations in GALC can cause GLD by impairing protein processing and/or folding and that pharmacological chaperones may be potential therapeutic agents for patients carrying certain mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278277PMC
http://dx.doi.org/10.1523/JNEUROSCI.6383-09.2010DOI Listing

Publication Analysis

Top Keywords

galc
12
enzymatic activity
12
mutations galc
12
galc activity
12
globoid cell
8
cell leukodystrophy
8
disease-causing mutations
8
protein processing
8
activity
7
mutations
6

Similar Publications

Human iPSC-derived myelinating organoids and globoid cells to study Krabbe disease.

PLoS One

December 2024

Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.

Article Synopsis
  • - Krabbe disease (Kd) is caused by a deficiency in the enzyme GALC, leading to the accumulation of the lipid galactosylceramide (GalCer), which produces a toxic lipid called psychosine that damages myelinating cells and leads to demyelination.
  • - Research using induced pluripotent stem cells (iPSCs) from Kd patients revealed that Kd myelinating organoids exhibit early myelination defects without affecting other cell types, while the microglia in these organoids show changes in response to GalCer feeding.
  • - The findings suggest that while Kd model organoids don't show classic lysosomal dysfunction, they provide an essential platform for studying the mechanisms behind demyel
View Article and Find Full Text PDF

There is growing evidence suggesting that the lysosome or lysosome dysfunction is associated with Alzheimer's disease (AD). Pathway analysis of post mortem brain-derived proteomic data from AD patients shows that the lysosomal system is perturbed relative to similarly aged unaffected controls. However, it is unclear if these changes contributed to the pathogenesis or are a response to the disease.

View Article and Find Full Text PDF

Krabbe disease (KD) is an autosomal recessive lysosomal storage disorder caused by loss-of-function mutations in the gene, which encodes for the enzyme galactosylceramidase (GALC). GALC is crucial for myelin metabolism. Functional deficiency of GALC leads to toxic accumulation of psychosine, dysfunction and death of oligodendrocytes, and eventual brain demyelination.

View Article and Find Full Text PDF

[Expanded carrier screening for 216 diseases in a cohort of 3 097 healthy Chinese individuals of childbearing age].

Zhonghua Fu Chan Ke Za Zhi

October 2024

Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, China.

To determine the carrier frequency and hot-spot variants of a custom-designed expanded carrier screening (ECS) panel with 216 diseases (216-ECS panel) within a Chinese population of childbearing age. Whole-exome sequencing data from a cohort of 3 097 unrelated healthy individuals (including 1 424 couples) from Peking Union Medical College Hospital between January 2013 and December 2023 were analyzed. Totally 220 genes which inherited in a recessive manner of 216-ECS panel were included in the analysis.

View Article and Find Full Text PDF

A 68-year-old man developed diplopia, unsteady walking, and bladder and bowel dysfunction followed by consciousness disturbance within four weeks. On physical examination, consciousness disturbance, bilateral ptosis, ophthalmoplegia, disappearing of doll's eye phenomenon, dysarthria, and diminished deep tendon reflexes were observed. Cerebrospinal fluid (CSF) examination showed oligoclonal bands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!