This paper proposes a new approach, coupling physical models and image estimation techniques, for modelling the movement of fluids. The fluid flow is characterized by turbulent movement and dynamically changing patterns which poses challenges to existing optical flow estimation methods. The proposed methodology, which relies on Navier-Stokes equations, is used for processing fluid optical flow by using a succession of stages such as advection, diffusion and mass conservation. A robust diffusion step jointly considering the local data geometry and its statistics is embedded in the proposed framework. The diffusion kernel is Gaussian with the covariance matrix defined by the local second derivatives. Such an anisotropic kernel is able to implicitly detect changes in the vector field orientation and to diffuse accordingly. A new approach is developed for detecting fluid flow structures such as vortices. The proposed methodology is applied on artificially generated vector fields as well as on various image sequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2010.2048614 | DOI Listing |
Nat Commun
January 2025
Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.
Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g.
View Article and Find Full Text PDFIEEE Trans Instrum Meas
May 2024
School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China.
Automatic retinal layer segmentation with medical images, such as optical coherence tomography (OCT) images, serves as an important tool for diagnosing ophthalmic diseases. However, it is challenging to achieve accurate segmentation due to low contrast and blood flow noises presented in the images. In addition, the algorithm should be light-weight to be deployed for practical clinical applications.
View Article and Find Full Text PDFNeurophotonics
January 2025
California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States.
Significance: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.
Aim: We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.
Nanoscale Adv
January 2025
Department of Mechanical Engineering, Yeungnam University Gyeongsan-si 38451 Gyeongbuk Republic of Korea
In this study, dye/polymer matrix-stabilized β-FeOOH nanomaterials were fabricated for therapeutic applications. Rh-B/F127@β-FeOOH nanomaterials were synthesized using two different methods: co-precipitation (CoP) and hydrothermal (HT) methods. The as-synthesized nanoparticles were characterized using various spectroscopic techniques, including FT-IR, UV-Vis, PL, XRD, HR-TEM, and XPS analysis.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!