Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Removal of Acid Red 73 (AR 73) and Reactive Red 24 (RR 24) onto modified wheat straw (MWS) from aqueous solutions was investigated. Sorption experiments were carried out as function of MWS dosage, contact time, initial concentration, pH and temperature. Characterizations of MWS were measured and a mass of amine groups were observed in the framework of MWS. The equilibrium sorption data were well represented by the Langmuir isotherm equation, and the calculated thermodynamic parameters indicated a spontaneous and endothermic nature for sorption process. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. More over, the high maximum sorption capacity (q(e max), 714.3 mg g(-1) for AR 73 and 285.7 mg g(-1) for RR 24) and low cost (1.24 US$ kg(-1)) of MWS provided strong evidence of the potential of MWS for the technological applications of anionic dyes removal from aqueous solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2010.03.071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!