Nitric oxide is elicited and inhibits viral replication in pigs infected with porcine respiratory coronavirus but not porcine reproductive and respiratory syndrome virus.

Vet Immunol Immunopathol

Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA.

Published: August 2010

There is little information on the role of nitric oxide (NO) in innate immunity to respiratory coronavirus (CoV) infections. We examined NO levels by Greiss assay in bronchoalveolar lavage (BAL) of pigs infected with either porcine respiratory coronavirus (PRCV) or porcine reproductive and respiratory syndrome virus (PRRSV), a member of Nidovirales, like CoV. The antiviral effects of NO on these two viruses were tested in an in vitro system using a NO donor, S-nitroso-N-acetylpenicillamine (SNAP). We detected a large increase in NO levels in BAL fluids of PRCV-infected pigs, but not in PRRSV-infected pigs. Pulmonary epithelial cell necrosis induced by PRCV coincided with increased NO. Moreover, NO levels in cell culture medium of PRRSV-infected alveolar macrophages (AMs) did not differ from that of mock-infected AMs. Antiviral assays showed that NO significantly inhibited PRCV replication in swine testicular (ST) cells, whereas PRRSV was not susceptible to NO based on the conditions tested. Our study suggests that unlike PRRSV which induces apoptosis in AMs, respiratory CoVs such as PRCV that infect pulmonary epithelial cells and cause cytolysis, induce NO production in the respiratory tract. Thus, NO may play a role in innate immunity to respiratory CoV infections by inhibiting viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902704PMC
http://dx.doi.org/10.1016/j.vetimm.2010.03.022DOI Listing

Publication Analysis

Top Keywords

respiratory coronavirus
12
nitric oxide
8
viral replication
8
pigs infected
8
infected porcine
8
respiratory
8
porcine respiratory
8
porcine reproductive
8
reproductive respiratory
8
respiratory syndrome
8

Similar Publications

Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.

View Article and Find Full Text PDF

Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.

View Article and Find Full Text PDF

At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.

View Article and Find Full Text PDF

Unlabelled: Post-acute sequelae of COVID-19 involves several organs, but its basis remains poorly understood. Some infected cells in mice survive the acute infection and persist for extended periods in the respiratory tract but not in other tissues. Here, we describe two experimental models of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection to assess the effect of viral virulence on previously infected cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!