Two fundamental types of polyploids are known: allopolyploids, in which different parental chromosome sets were combined by ancestral hybridization and duplication; and autopolyploids, which derive from multiplication of the same chromosome set. In autopolyploids, changes to the nuclear environment are not as profound as in allopolyploids, and therefore the effects of genome doubling on gene regulation remain unclear. To investigate the consequences of autopolyploidization per se, we performed a microarray analysis in three equivalent lineages of matched diploids and autotetraploids of Arabidopsis thaliana. Additionally, we compared the expression levels of GFP transgenes driven by endogenous enhancer elements (enhancer traps) in diploids and autotetraploid of 16 transgenic lines. We expected that true ploidy-dependent changes should occur in independently derived autopolyploid lineages. By this criterion, our microarray analysis detected few changes associated with polyploidization, while the enhancer-trap analysis revealed altered GFP expression at multiple plant life stages for 25% of the lines tested. Genes on individual traps were coordinately regulated while endogenous gene expression was not affected except for one line. The unique sensitivity of enhancer traps to ploidy, in contrast to the observed stability of genes, could derive from lower complexity of regulatory pathways acting on traps versus endogenous genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.2010.03198.xDOI Listing

Publication Analysis

Top Keywords

arabidopsis thaliana
8
effects genome
8
genome doubling
8
microarray analysis
8
enhancer traps
8
differential sensitivity
4
sensitivity arabidopsis
4
thaliana transcriptome
4
transcriptome enhancers
4
enhancers effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!