In legumes, Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is a component of the common symbiosis genes that are required for both root nodule (RN) and arbuscular mycorrhiza (AM) symbioses and is thought to be a decoder of Ca(2+) spiking, one of the earliest cellular responses to microbial signals. A gain-of-function mutation of CCaMK has been shown to induce spontaneous nodulation without rhizobia, but the significance of CCaMK activation in bacterial and/or fungal infection processes is not fully understood. Here we show that a gain-of-function CCaMK(T265D) suppresses loss-of-function mutations of common symbiosis genes required for the generation of Ca(2+) spiking, not only for nodule organogenesis but also for successful infection of rhizobia and AM fungi, demonstrating that the common symbiosis genes upstream of Ca(2+) spiking are required solely to activate CCaMK. In RN symbiosis, however, CCaMK(T265D) induced nodule organogenesis, but not rhizobial infection, on Nod factor receptor (NFRs) mutants. We propose a model of symbiotic signaling in host legume plants, in which CCaMK plays a key role in the coordinated induction of infection thread formation and nodule organogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916219 | PMC |
http://dx.doi.org/10.1111/j.1365-313X.2010.04228.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!