In the present study we analysed the mechanism of intracellular routing of iron acquired by erythroid cells via receptor-mediated endocytosis of Tf-Fe [Tf (transferrin)-iron]. Using real-time fluorimetry and flow cytometry, in conjunction with targeted fluorescent metal sensors, we monitored concurrently the cytosolic and mitochondrial changes in labile iron evoked by endocytosed Tf-Fe. In K562 human erythroleukaemia cells, most of the Tf-Fe was found to be delivered to the cytosolic labile iron pool by a saturable mechanism [60-120 nM Km (app)] that was quantitatively dependent on: Tf receptor levels, endosomal acidification/reduction for dislodging iron from Tf and ensuing translocation of labile iron into the cytosolic compartment. The parallel ingress of iron to mitochondria was also saturable, but with a relatively lower Km (app) (26-42 nM) and a lower maximal ingress per cell than into the cytosol. The ingress of iron into the mitochondrial labile iron pool was blocked by cytosol-targeted iron chelators, implying that a substantial fraction of Tf-Fe delivered to these organelles passes through the cytosol in non-occluded forms that remain accessible to high-affinity ligands. The present paper is the first report describing intracellular iron routing measured in intact cells in real-time and in quantitative terms, opening the road for also exploring the process in mixed-cell populations of erythroid origin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20100213 | DOI Listing |
J Environ Sci (China)
July 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:
Arsenic-contaminated groundwater is widely used in agriculture. To meet the increasing demand for safe water in agriculture, an efficient and cost-effective method for As removal from groundwater is urgently needed. We hypothesized that Fe (oxyhydr)oxide (FeOOH) minerals precipitated in situ from indigenous Fe in groundwater may immobilize As, providing a solution for safely using As-contaminated groundwater in irrigation.
View Article and Find Full Text PDFToxics
December 2024
Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
This study investigated the elemental composition of , addressing the gap in comprehensive trace element profiling of this medicinal plant. The research aimed to determine the distribution of macronutrients, micronutrients, and beneficial and potentially toxic elements across different plant parts (seeds, leaves, stems, and roots). Using ICP-OES analysis, two digestion methods were employed to capture both complex and labile elements.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.
Saltwater intrusion (SWI) is a concerning issue impacting agricultural production and soil C cycling, which can have a wider effect on the climate. Complex soil processes driving soil C cycling following saltwater intrusion have not yet been fully quantified. Agricultural fields with varying degrees of saltwater intrusion, unaffected control, and native tidal marsh were studied to understand the impacts of saltwater intrusion on soil properties and soil carbon dynamics.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China. Electronic address:
Nanomedicine-driven ferroptosis has emerged as a promising tumor treatment strategy through delivering exogenous iron and aggravating the lethal accumulation of lipid peroxides (LPO). However, the compensatory mechanisms of ferroptosis defense systems in cancer cells compromise the therapeutic efficacy and lead to potential side effects. Herein, a highly effective ferroptotic nano-amplifier is designed to synergistically promote ferroptosis via increasing intracellular labile iron, exacerbating lipid peroxidation and overcoming the defense system.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!