Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The colonization of man made structures by marine or freshwater organisms or "biofouling" is a problem for maritime and aquaculture industries. Increasing restrictions on the use of toxic coatings that prevent biofouling, create a gap in the market that requires new approaches to produce novel nonbiocidal alternatives. This review details the systematic strategy adopted by an FP6 EU Integrated Project "AMBIO" to develop fundamental understanding of key surface properties that influence settlement and adhesion of fouling organisms. By this approach the project contributes to the understanding of fundamental phenomena involved in biofouling, and to the development of environmentally benign solutions by coating manufacturers within the consortium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1116/1.2844718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!