The authors describe the deposition of single biomolecules on substrates at defined spacing by pure self-assembly. The substrate is equipped with an array of 8 nm large gold particles which form the template for biomolecule binding. The authors verified the successful binding of single biomolecules via specific antibody labeling and imaging by fluorescence microscopy. Scanning force microscopy provided evidence that every gold nanoparticle of the pattern is occupied by at least one biomolecule. Furthermore, gold conjugated secondary antibodies in combination with scanning electron microscopy proved that at least 75% of the nanoparticles carried only one active biomolecule. The precision given by such surface densities is molecularly defined and such considerably higher than in any other case reported so far.

Download full-text PDF

Source
http://dx.doi.org/10.1116/1.2713991DOI Listing

Publication Analysis

Top Keywords

single biomolecules
8
site-specific presentation
4
presentation single
4
single recombinant
4
recombinant proteins
4
proteins defined
4
defined nanoarrays
4
nanoarrays authors
4
authors describe
4
describe deposition
4

Similar Publications

To study the effect of dose-rate in the time evolution of chemical yields produced in pure water versus a cellular-like environment for FLASH radiotherapy research. A version of TOPAS-nBio with Tau-Leaping algorithm was used to simulate the homogenous chemistry stage of water radiolysis using three chemical models: 1) liquid water model that considered scavenging of eaq-, H● by dissolved oxygen; 2) Michaels & Hunt model that considered scavenging of ●OH, eaq-, and H● by biomolecules existing in cellular environment; 3) Wardman model that considered model 2) and the chemical repair enzyme glutathione (GHS). H2O2 concentrations at conventional and FLASH dose-rates were compared with published measurements.

View Article and Find Full Text PDF

Cascade of phase transitions in a dipeptide supramolecular assembly triggered by a single fatty acid.

Colloids Surf B Biointerfaces

December 2024

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,  China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Significant progress has been achieved with diversity of short peptide supramolecular assemblies. However, their programmable phase modulation by single stimulus remains a great challenge. Herein, we demonstrate a dipeptide supramolecular system undergoes sequentially coupled phase transitions upon hydrogen bonding association and dissociation triggered by a single fatty acid.

View Article and Find Full Text PDF

High-Speed Sequential DNA Computing Using a Solid-State DNA Origami Register.

ACS Cent Sci

December 2024

School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.

DNA computing leverages molecular reactions to achieve diverse information processing functions. Recently developed DNA origami registers, which could be integrated with DNA computing circuits, allow signal transmission between these circuits, enabling DNA circuits to perform complex tasks in a sequential manner, thereby enhancing the programming space and compatibility with various biomolecules of DNA computing. However, these registers support only single-write operations, and the signal transfer involves cumbersome and time-consuming register movements, limiting the speed of sequential computing.

View Article and Find Full Text PDF

Characterization of a novel acidic phospholipase A isolated from the venom of Bothrops mattogrossensis: From purification to structural modeling.

Int J Biol Macromol

December 2024

Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil. Electronic address:

Phospholipases A (PLAs) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLAs from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA from BmV, designated BmPLA-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment.

View Article and Find Full Text PDF

Efficient Orthogonal Spin Labeling of Proteins via Aldehyde Cyclization for Pulsed Dipolar EPR Distance Measurements.

J Am Chem Soc

December 2024

State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!