Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article reports that the kinetics of surface-initiated atom transfer radical polymerization can be quantified by the quartz crystal microbalance with dissipation (QCM-D) technique. The kinetics of in situ growth of poly(oligoethylene glycol methylmethacrylate) monitored on a gold-coated QCM-D sensor chip revealed that changes in the experimentally observed frequency (DeltaF) and dissipation (DeltaD) as a function of polymerization time were a function of the initiator density, and that the experimental response could be predicted from a continuum model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1116/1.2190697 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!