Evidence shows that exercise increases insulin-sensitive glucose uptake and that exercise-induced AMP-regulated protein kinase (AMPK) activation is a likely candidate to mediate this metabolic adaptation. The purpose of this study was to determine whether repeated AMPK activation can similarly enhance insulin-sensitive fatty acid (FA) metabolism. L6 myotubes were incubated under the following conditions: repeated plus acute 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) treatment (RAA; 1 mmol/L AICAR for 5 h/d for 5 days plus 1 mmol/L AICAR for 60 min on day 6), repeated AICAR (RA; 1 mmol/L AICAR for 5 h/d for five days) or acute AICAR (AA; 1 mmol/L AICAR for 60 min) and were compared with control cells that were not treated with AICAR. On day six, cells from each group were incubated with or without 100 nmol/L insulin. AICAR treatment and insulin stimulation independently increased (P < 0.05) palmitate uptake in all groups. RAA potentiated the insulin-induced increase in palmitate uptake by 97% (P < 0.05) as compared with control cells. RA and AA treatments prevented the insulin-induced decrease in palmitate oxidation, while RAA treatment restored the sensitivity of the cells to insulin action on palmitate oxidation. Total peroxisome proliferator-activated receptor-gamma co-activator-1 alpha, atypical protein kinase C-zeta, cytochrome C and CD36 protein content was increased (P < 0.05) by RA treatment, but unaffected by insulin. These results indicate that repeated AMPK activation induces improvements in insulin-sensitive FA uptake and oxidation and that this occurs partly via changes in the expression of proteins linked to insulin signaling and FA uptake and oxidation capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1258/ebm.2009.009228 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!