Despite advances in defining the critical molecular determinants for leukemia stem cell (LSC) generation and maintenance, little is known about the roles of microRNAs in LSC biology. Here, we identify microRNAs that are differentially expressed in LSC-enriched cell fractions (c-kit(+)) in a mouse model of MLL leukemia. Members of the miR-17 family were notably more abundant in LSCs compared with their normal counterpart granulocyte-macrophage progenitors and myeloblast precursors. Expression of miR-17 family microRNAs was substantially reduced concomitant with leukemia cell differentiation and loss of self-renewal, whereas forced expression of a polycistron construct encoding miR-17-19b miRNAs significantly shortened the latency for MLL leukemia development. Leukemias expressing increased levels of the miR-17-19b construct displayed a higher frequency of LSCs, more stringent block of differentiation, and enhanced proliferation associated with reduced expression of p21, a cyclin-dependent kinase inhibitor previously implicated as a direct target of miR-17 microRNAs. Knockdown of p21 in MLL-transformed cells phenocopied the overexpression of the miR-17 polycistron, including a significant decrease in leukemia latency, validating p21 as a biologically relevant and direct in vivo target of the miR-17 polycistron in MLL leukemia. Expression of c-myc, a crucial upstream regulator of the miR-17 polycistron, correlated with miR-17-92 levels, enhanced self-renewal, and LSC potential. Thus, microRNAs quantitatively regulate LSC self-renewal in MLL-associated leukemia in part by modulating the expression of p21, a known regulator of normal stem cell function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862107 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-09-3268 | DOI Listing |
Zhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Children's Hematology and Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
Objectives: To investigate the clinical characteristics and prognosis of acute erythroleukemia (AEL) in children.
Methods: A retrospective analysis was conducted on the clinical data, treatment, and prognosis of 8 children with AEL treated at the First Affiliated Hospital of Zhengzhou University from January 2013 to December 2023.
Results: Among the 7 patients with complete bone marrow morphological analysis, 4 exhibited trilineage dysplasia, with a 100% incidence of erythroid dysplasia (7/7), a 71% incidence of myeloid dysplasia (5/7), and a 57% incidence of megakaryocytic dysplasia (4/7).
Drug Resist Updat
January 2025
Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:
Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.
View Article and Find Full Text PDFJ Med Chem
January 2025
Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
Targeting the WDR5-MLL1 protein-protein interaction (PPI) is considered to be an effective approach for the treatment of MLL-rearranged leukemia. However, interfering with WDR5-MLL1 PPI reduces methylated H3K4 levels and induces a decline in acetylated H3 levels, which may contribute to the suboptimal cellular efficacy of WDR5 inhibitors. We observed that cotreatment with WDR5-MLL1 PPI and HDAC inhibitors augmented the antiproliferative effect in MV-4-11 cells.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00122 Rome, Italy.
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.
View Article and Find Full Text PDFExp Hematol
January 2025
Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden. Electronic address:
T-cell acute lymphoblastic leukemia (T-ALL), which constitutes of 10-15% of all pediatric ALL cases, is known for its complex pathology due to pervasive genetic and chromosomal abnormalities. Although most children are successfully cured, chromosomal rearrangements involving the KMT2A gene is considered a poor prognostic factor. In a cohort of 171 pediatric T-ALL samples we have studied differences in gene and splice variant patterns in KMT2A rearranged (KMT2A-r) T-ALL compared to KMT2A negative (KMT2A-wt) T-ALL samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!