Background: Delivery of bronchodilator to infants and small children from a pressurized metered-dose inhaler with valved holding chamber (pMDI-VHC) is limited by airway narrowness, short respiratory cycle time, and small tidal volume (V(T)). There is a need for a versatile, efficient VHC, given the variety of treatment modalities.

Methods: We tested the AeroChamber Mini VHC (the internal geometry of which is optimized for aerosol delivery, and which accepts a pMDI canister that has a dose counter) in experiments to determine differences in the delivery of hydrofluoroalkane-propelled albuterol (90 microg/actuation) during: mechanical ventilation via endotracheal tube (ETT); manual resuscitation via ETT; and spontaneous breathing via face mask. We tested 5 units of the AeroChamber Mini VHC per test. We simulated the tidal breathing of a premature neonate (V(T) 6 mL), a term neonate (V(T) 20 mL), and a child approximately 2 years old (V(T) 60 mL). We collected the aerosol on an electret filter and quantitatively assayed for albuterol.

Results: The total emitted mass of albuterol per actuation that exited the VHC was marginally greater during spontaneous breathing (12.1 +/- 1.8 microg) than during manual resuscitation (10.0 +/- 1.1 microg) (P = .046). Albuterol delivery via mechanical ventilation, though comparable with the premature-neonate model (3.3 +/- 1.2 microg), the term-neonate model (3.8 +/- 2.1 microg), and the 2-y-old-child model (4.2 +/- 2.3 microg) (P = .63), was significantly lower than in the spontaneous-breathing and manual-resuscitation models (P < .001). In the neonatal models the total emitted mass was similar with the spontaneous-breathing model (6.0 +/- 1.0 microg with the premature-neonate model, 10.5 +/- 0.7 microg with the term-neonate model) and the manual-resuscitation model (5.5 +/- 0.3 microg premature-neonate model, 10.7 +/- 0.9 microg term-neonate model) (P > or = .46 via one-way analysis of variance).

Conclusion: The reduced delivery of albuterol during mechanical ventilation (compared to during spontaneous breathing and manual resuscitation via ETT) was probably associated with the saturated atmosphere in the breathing circuit (37 degrees C, relative humidity > 99%), compared to the ambient air (22 +/- 1 degrees C, 44 +/- 7% relative humidity). The AeroChamber Mini VHC may provide a versatile alternative to VHCs that are designed exclusively for one aerosol treatment modality.

Download full-text PDF

Source

Publication Analysis

Top Keywords

+/- microg
36
model +/-
20
aerochamber mini
12
mini vhc
12
mechanical ventilation
12
manual resuscitation
12
spontaneous breathing
12
premature-neonate model
12
microg term-neonate
12
term-neonate model
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!